Numerical Investigation of the Effects of Chemical Species and Chemical Kinetic Mechanisms on Laminar Premixed Flame-Acoustic Wave Interactions

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 86

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-16-3_003

تاریخ نمایه سازی: 19 دی 1401

چکیده مقاله:

Numerical simulation of interactions between acoustic waves and flames is of utmost importance in thermo-acoustic instability research. In this study, interactions between a one-dimensional Methane-Air laminar premixed flame and acoustic waves with a frequency of ۵۰ to ۵۰۰۰۰ Hz are simulated by simultaneously solving the equations for energy conservation, chemical species transport, state and continuity in one-dimensional space. By assuming that the flame thickness is smaller than the acoustic wavelength, the spatial pressure fluctuations can be neglected and the flame experiences only a time-varying acoustic pressure. The GRI mechanisms, as well as their reduced mechanisms, are considered to obtain results for steady flames without acoustic waves, and the interaction of unsteady flames with acoustic waves. Results show that the total heat-release-rate fluctuations for the flame is affected by increasing the frequency of the acoustic wave. An increase in frequency first increases the total heat released, and then decreases it. The obtained results are in good agreement with those of other researchers. Furthermore, at the presence of acoustic waves, various chemical species can affect the total heat-release-rate fluctuations. With Rayleigh's instability criterion, it can be shown that H۲O, CO۲ and O۲ are the main species to the fluctuations of the total heat release rate and lead to flame instability. Results show that heat-release-rate of H۲O specie is the most important on the total heat-release-rate. Therefore, for the flame-acoustic waves interaction problem, the best mechanism is the one that could predict the concentration of H۲O more precisely.

نویسندگان

E. Salimi Babokani

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan ۸۴۱۵۶۸۳۱۱۱, Iran

M. Davazdah Emami

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan ۸۴۱۵۶۸۳۱۱۱, Iran

A. R. Pishevar

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan ۸۴۱۵۶۸۳۱۱۱, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Baum, M., T. Poinsot and D. Thévenin (۱۹۹۵). Accurate boundary ...
  • Beardsell, G. and G. Blanquart (۲۰۱۹). Impact of pressure fluctuations ...
  • Beardsell, G. and G. Blanquart (۲۰۲۱). Fully compressible simulations of ...
  • Bowman, C. T., R. K. Hanson, D. F. Davidson, W. ...
  • Chang, W. C. and J. Y. Chen (n.d.). Reduced Mechanisms ...
  • Chao, Y. C., T. Yuan and C. S. Tseng (۱۹۹۶). ...
  • Chen, J. Y. (n.d.). Reduced Mechanisms basedon GRI-Mech. https://tnfworkshop. org/chemistry/Clavin, ...
  • Clavin, P. and G. Searby (۲۰۰۸). Unsteady response of chain-branching ...
  • Demare, D. and F. Baillot (۲۰۰۴). Acoustic enhancement of combustion ...
  • Fernandez-Tarrazo, E., A. L. Sánchez, A. Linan and F. A. ...
  • Frenklach, M., H. Wang, M. Goldenberg, G. P. Smith, D. ...
  • Fujisawa, N., K. Iwasaki, K. Fujisawa and T. Yamagata (۲۰۱۹). ...
  • Hajialigol, N. and K. Mazaheri (۲۰۱۷). Thermal response of a ...
  • Han, X. and A. S. Morgans (۲۰۱۵). Simulation of the ...
  • Han, X., J. Yang and J. Mao (۲۰۱۶). LES investigation ...
  • Jiménez, C., J. Quinard, J. Graña-Otero, H. Schmidt, and G. ...
  • Kazakov, A. and F. Frenklach (n.d. a). DRM۱۹. http://combustion.berkeley.edu/drm/Kazakov, A. ...
  • Klein, R. (۱۹۹۵). Semi-Implicit Extension of a Godunov- Type Scheme ...
  • Laverdant, A. and D. Thevenin (۲۰۰۳). Interaction of a Gaussian ...
  • Lee, C. Y. and S. Cant (۲۰۱۷). LES of Nonlinear ...
  • Massey, J. C., I. Langella and N. Swaminathan (۲۰۱۸). Large ...
  • Mcintosh, A. C. (۱۹۹۱). Pressure disturbances of different length scales ...
  • Mcintosh, A. C. (۱۹۹۳). The linearised response of the mass ...
  • Mcintosh, A. C. (۱۹۹۹). Deflagration fronts and compressibility. Philosophical Transactions ...
  • Oh, J., P. Heo and Y. Yoon (۲۰۰۹). Acoustic excitation ...
  • Peters, N. (۱۹۹۶). Fifteen lectures on laminar and turbulent combustion. ...
  • Rayleigh, J. S. W. (۱۹۴۵). Theory of Sound. Dover Publications; ...
  • Saxena, P. and F. A. Williams (۲۰۰۶). Testing a small ...
  • Schmidt, H. and C. Jiménez (۲۰۱۰). Numerical study of the ...
  • Shalaby, H., A. Laverdant and D. Thévenin (۲۰۰۹). Direct numerical ...
  • Shreekrishna, S. and T. Lieuwen (۲۰۰۹). High frequency premixed flame ...
  • Smith, G. P., D. M. Golden, F. Frenklach, N. W. ...
  • Lieuwen, T. C. and V. Yang (۲۰۰۵). Combustion Instabilities in ...
  • Tang, Q. (۲۰۰۳). Ph. D. Thesis. Computational Modelling of Turbulent ...
  • Wangher, A., G. Searby and J. Quinard (۲۰۰۸). Experimental investigation ...
  • نمایش کامل مراجع