Free ideals and real ideals of the ring of frame maps from \mathcal P(\mathbb R) to a frame

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 215

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ASYAZDT-7-2_007

تاریخ نمایه سازی: 15 دی 1401

چکیده مقاله:

Let \mathcal F_{\mathcal P}( L) (\mathcal F_{\mathcal P}^{*}( L)) be   the f-rings   of all (bounded) frame maps from \mathcal P(\mathbb R) to a frame L. \mathcal F_{{\mathcal P}_{\infty}}( L) is  the family of all f\in \mathcal F_{\mathcal P}( L) such that  {\uparrow}f(-\frac ۱n, \frac ۱n) is compact for any n\in\mathbb N and the subring  \mathcal F_{{\mathcal P}_{K}}( L) is the family of all   f\in \mathcal F_{\mathcal P}( L) such that {{\,\mathrm{coz}\,}}(f) is compact. We  introduce  and study  the concept of   real ideals in \mathcal F_{\mathcal P}( L) and \mathcal F_{\mathcal P}^*( L). We  show  that every maximal ideal of \mathcal F_{\mathcal P}^{*}( L) is   real, and also  we study the relation between the conditions ``L is compact" and ``every maximal ideal of \mathcal F_{\mathcal P}(L) is real''. We prove  that for every   nonzero real Riesz map \varphi \colon \mathcal F_{\mathcal P}( L)\rightarrow \mathbb R,  there is an element  p in \Sigma L such that \varphi=\widetilde {p_{{{\,\mathrm{coz}\,}}}}  if L is a zero-dimensional frame for which B(L) is a sub-\sigma-frame  of   L and every maximal ideal of \mathcal F_{\mathcal P}( L) is real. We show  that \mathcal F_{{\mathcal P}_{\infty}}(L)  is equal to the intersection of all  free maximal ideals of \mathcal F_{\mathcal P}^{*}(L) if B(L) is a sub-\sigma-frame  of a zero-dimensional frame  L   and also,  \mathcal F_{{\mathcal P}_{K}}(L) is equal to the intersection of all free ideals \mathcal F_{\mathcal P}( L)   (resp.,  \mathcal F_{\mathcal P}^*( L)) if L is a zero-dimensional frame.  Also, we study free ideals and fixed ideals of    \mathcal F_{{\mathcal P}_{\infty}}( L) and  \mathcal F_{{\mathcal P}_{K}}( L).

نویسندگان

Ali Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Postal Code ۹۶۱۷۹۷۶۴۸۷, Sabzevar, Iran

Ahmad Mahmoudi Darghadam

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. K. Acharyya, G. Bhunia, and P.P. Ghosh, Finite frames, ...
  • S. Afrooz and M. Namdari, C∞(X) and related ideals, Real ...
  • A.R. Aliabad, F. Azarpanah, and M. Namdari, Rings of continuous ...
  • F. Azarpanah, Essential ideals in C(X), Period. Math. Hungar. ۳۱(۲) ...
  • F. Azarpanah and R. Soundararajan, When the family of functions ...
  • B. Banaschewski, The real numbers in pointfree topology, Textos de ...
  • B. Banaschewski, Remarks concerning certain function rings in pointfree topology, ...
  • A. Bigard, K. Keimel, and S. Wolfenstein, Groups et anneaux ...
  • T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, ...
  • T. Dube, On the ideal of functions with compact support ...
  • M.M. Ebrahimi, A. Karimi Feizabadi and M. Mahmoudi, Pointfree spectra ...
  • A.A. Estaji, M. Abedi, and A. Mahmoudi Darghadam, On self-injectivity ...
  • A.As. Estaji, E. Hashemi, and A.A. Estaji, On property (A) ...
  • A.A. Estaji, A. Karimi Feizabadi, and B. Emamverdi, Representation of ...
  • A.A. Estaji and A. Mahmoudi Darghadam, Rings of continuous functions ...
  • L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, ...
  • J. Gutierrez Garca, J. Picado, and A. Pultr, Notes on ...
  • P.T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, Cambridge ...
  • A. Karimi Feizabadi, A.A. Estaji, and B. Emamverdi, RL-valued f-ring ...
  • A. Karimi Feizabadi, A.A. Estaji, and M. Zarghani, The ring ...
  • A. Karimi Feizabadi and M.M. Ebrahimi, Pointfree prime representation of ...
  • C.W. Kohls, The space of prime ideals of a ring, ...
  • J. Picado and A. Pultr, Frames and locales: Topology without ...
  • D. Rudd, On isomorphisms between ideals in rings of continuous ...
  • M. Zarghani and A. Karimi Feizabadi, Zero elements in lattice ...
  • نمایش کامل مراجع