Evaluation of Data Mining Classification Techniques and Performances to Banking Customers Credit Scoring

سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,191

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SASTECH05_130

تاریخ نمایه سازی: 22 مرداد 1391

چکیده مقاله:

The clarity of the information about Iran’s banking system is increased at the result of the globalization of trade and the growing economy of the country’s economy and this is playing a significant role in the process of the banks in primary customer. Such a system which assist the banks in reaching their goals will require diversity ground. This system have some problems in Iran’s banking system due to the lack of comprehensive data bank of bank’s customer that these problems will be reveled in the payment facility to customers or presentation long-term programs about the amount of the facilities that will paid in the future and also this can’t considered as a guarantee for receipt of claims. Thus the lack of the full validation and scoring customers in Iranian banks with the aim of transparency and competition in the banking system is one of the main reasons for increased bank demand.There are many data mining techniques for predicting and validation of bank’s customers, that the most famous techniques is considered in this article which included: support vector machines, genetic programming, denotative analysis, logical regression, C4.5, Bagging, Boosting.

کلیدواژه ها:

نویسندگان

Narges khalesi

Master Student of Islamic Azad University, Zanjan

Amir hoeiyn shokuhi

MS Computer Engineering – Iran university of Science and Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Baesens, B., Setiono, R., Mues, C.; and Vanthienen, J. (2003). ...
  • Baesens, B., Van Gestel, T. Viaene, S. Stepanova, M., Suykens, ...
  • Chen, M. S., Han, J., Yu, P. S. (1996). Data ...
  • Cheng-Lung Huang et al.(2006). Credit scoring with a data mining ...
  • Chen, S. Y., & Liu, X. (2004).The contribution of data ...
  • Drucker, H ., Schapire, R., Simard P. (1 993).Boosting performance ...
  • Freund, Y. , Robert, E., , Schapire. (1997).A decis ion-theoretic ...
  • Friedman J. (2003). Recent advances in predictive machine learning, Proceedings ...
  • Frydman H.E., Altman, E.I., and Kao D-L. (1985). Introducing recursive ...
  • Han. J, .Kamber M. (2001). Data Mining: Concepts and Techniques, ...
  • Henley, W. E.(1995). Statistical aspects of credit scoring, Dissertation, The ...
  • Henley W. E., and Hand, D. J. (1996). A k-nearest ...
  • Hsieh. N.-C. (2005). Hybrid mining approach in the design of ...
  • s" sAsrech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14 ...
  • Hussein A.Abdou. (2010). Genetic Programming for credit scoring: The case ...
  • Ince. .H, Aktan .B. (2009). A comparison of data mining ...
  • Koza, _ John R. Koz, (1990). Genetic progranuming: A paradigm ...
  • Lee, T.-S., Chen, I.-F. (2005). A two-Stage hybrid credit scoring ...
  • Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (2005). ...
  • Lee, T. S., Chiu, C. C., Chou, Y. C., Lu, ...
  • Malhotra, R., & Malhotra, D. K. (2005) _ Differentiating between ...
  • D. martens et al. (2007). Comprehens ible credit scoring models ...
  • Murphy, P. M., Aha, D. W. (2005). UCI repository of ...
  • Ong, C.-S., Huang, J.-J., Tzeng, G.-H. (2005). Building credit scoring ...
  • Reichert, A. K., Cho, C. C., Wagner, G. M. (1983). ...
  • Schapire, Robert E., Singer, Yoram, (1997). Improved boosting algorithms using ...
  • Schebesch KB, Stecking R. (2005). Support vector machines for classifying ...
  • Thomas, L. C. (2000). A Survey of credit and behavioral ...
  • Vapnik V. N. (1995). The nature of statistical learming Theory, ...
  • s" sAsrech 2011, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14 ...
  • West, D.(2005). Neural network credt scoring models, Computers and Operations ...
  • Xiujuan Xu et al. (2009). Credit scoring algorithm based on ...
  • Yan Zhan, Hao Chen and Guo-Chun Zhang. (2006). An optimization ...
  • نمایش کامل مراجع