Cryptocurrency Robust Portfolio Optimization with Return Forecasting Using Deep Learning

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 352

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IPQCONF08_003

تاریخ نمایه سازی: 3 آذر 1401

چکیده مقاله:

It might be challenging to manage a portfolio in the cryptocurrency market. It can be difficult to choose from among thousands of assets, forecast costs, gauge returns, and assess risks. In this work, we use an LSTM deep learning model to forecast the return for each chosen cryptocurrency. Furthermore, we integrated the predicted return with three conventional portfolio optimization methods, namely MV, SHARPE, and NAVE, to demonstrate the superiority of our methodology in terms of portfolio return factors. The assessment is based on historical data for the ۱۲ months from January ۱, ۲۰۲۱, to December ۳۱, ۲۰۲۱. The results of the experiments demonstrate that our robust portfolio optimization outperforms conventional methods in terms of the portfolio return criteria.

نویسندگان

Mehrad Mashoof

Department of Industrial Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran

Abbas Saghaei

Department of Industrial Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran

Amir Azizi

assistant professor of industrial engineering department, engineering faculty, science and research branch, Islamic Azad University, Tehran