Improving Persian Dependency-Based Parser Using Deep Learning

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 220

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CKE-5-1_002

تاریخ نمایه سازی: 29 شهریور 1401

چکیده مقاله:

One of the most important problems in computational linguistics is the grammar and, consequently, syntactic structures and structural parsing. The structural parser tries to analyze the relationships between words and to extract the syntactic structure of the sentence. The dependency-based structural parser is proper for free-word-order and morphologically-rich languages such as Persian. The data-driven dependency parser performs the categorization process based on a wide range of features, which, in addition to the problems such as sparsity and curse of dimensionality, it requires the correct selection of the features and proper setting of the parameters. The aim of this study is to obtain high performance with minimal feature engineering for dependency parsing of Persian sentences. In order to achieve this goal, the required features of the Maximum Spanning Tree Parser (MSTParser) are extracted with a Bidirectional Long Short-Term Memory (Bi-LSTM) Network and the edges of the dependency graph is scored by that. Experiments are conducted on the Persian Dependency Treebank (PerDT) and the Uppsala Persian Dependency Treebank (UPDT). The obtained results indicate that the definition of new features improves the performance of the dependency parser for Persian. The achieved unlabeled attachment scores for PerDT and UPDT are ۹۰.۵۳% and ۸۷.۰۲%, respectively.

نویسندگان

soghra lazemi

Department of Computer Eng., Faculty of Electrical & Computer Eng., The University of Kashan, Kashan, Iran.

hossein Ebrahimpour-komleh

Department of Computer Eng., Faculty of Electrical & Computer Eng., University of Kashan, Kashan, Iran.

nasser Noroozi

Department of Computer Eng., Faculty of Electrical & Computer Eng., University of Kashan, Kashan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Liddy, E. D., "Natural language processing", ۲۰۰۱ ...
  • Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W., "Natural ...
  • Jurafsky, D., and James, H., "Speech and language processing an ...
  • Sakaguchi, K., and Nagata, R., "Phrase structure annotation and parsing ...
  • Khatun, A., and Hoque, M. M., "Statistical parsing of Bangla ...
  • Nivre, J., "Dependency grammar and dependency parsing", MSI report, pp. ...
  • Zhang, X., Cheng, J., and Lapata, M., "Dependency parsing as ...
  • Grella, M., "Notes About a More Aware Dependency Parser", arXiv ...
  • Falavarjani, S. A. M., and Ghassem-Sani, G., "Advantages of dependency ...
  • Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, NA., ...
  • Kübler, S., McDonald, R., and Nivre, J., "Dependency parsing", Synthesis ...
  • Plank, B., and Van Noord, G., "Grammar-driven versus data-driven: which ...
  • Khallash, M., Hadian, A., and Minaei-Bidgoli, B., "An empirical study ...
  • McDonald, R., Crammer, K., and Pereira, F. C., "Spanning tree ...
  • Estiri, A., Kahani, M., Hoseini, M., and Asgarian, E., "Designing ...
  • Seraji, M., Bernd, B., and Nivre, J., "ParsPer: A dependency ...
  • Nivre, J., Hall, J., and Nilsson, J., "Maltparser: A data-driven ...
  • McDonald, R., Pereira, F., Ribarov, K., and Hajič, J., "Non-projective ...
  • Bohnet, B., and Kuhn, J., "The best of both worlds: ...
  • Bohnet, B., Nivre, J., "A transition-based system for joint part-of-speech ...
  • Martins, A. F., Smith, N. A., Xing, E. P., Aguiar, ...
  • Seraji, M., Megyesi, B., and Nivre, J., "Dependency parsers for ...
  • Lazemi, S., Ebrahimpour-Komleh, H., "Feature engineering in Persian dependency parser", ...
  • Shamsfard, M., "Challenges and open problems in Persian text processing", ...
  • Rasooli, M. S., Kouhestani, M., and Moloodi, A., "Development of ...
  • Seraji, M., Jahani, C., Megyesi, B., and Nivre, J., "A ...
  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, ...
  • Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and Mikolov, ...
  • Sarabi, Z., Mahyar, H., and Farhoodi, M., "ParsiPardaz: Persian language ...
  • Seraji, M., Megyesi, B., and Nivre, J., "A basic language ...
  • نمایش کامل مراجع