تشخیص نقاط پرت در مدل رگرسیونی لیو
محل انتشار: مجله علوم آماری، دوره: 8، شماره: 1
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 280
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_STAT-8-1_002
تاریخ نمایه سازی: 23 شهریور 1401
چکیده مقاله:
در حضور هم خطی با ناپایدار بودن برآورد کمترین توان های دوم پارامترها، انتظار می رود که باقیمانده ها هم ناپایدار باشند و در این صورت ممکن است که یک باقیمانده بزرگ از برازش کمترین توان های دوم نمایان گر یک مشاهده پرت نباشد و برعکس. در این صورت لزوم بررسی نقاط پرت هنگامی که از روش های معمول برآورد غیر از کمترین توان های دوم از جمله برآوردگر لیو استفاده می شود ضروری به نظر می رسد. در این مقاله با استفاده از روش انتقال میانگین نقاط پرت، آماره آزمون لازم برای شناسایی این نقاط به هنگام استفاده از برآوردگر لیو تعمیم داده می شود. در ادامه با استفاده از مجموعه داده ای واقعی کاربرد این روش مورد ارزیابی قرار می گیرد.
کلیدواژه ها:
Liu Estimator ، Outliers ، Collinearity ، Mean Shift Outliers Method ، برآوردگر لیو ، نقاط پرت ، هم خطی ، روش انتقال میانگین نقاط پرت
نویسندگان
فروغ حاجی باقری
Department of Statistics, Shahid Chamran University, Ahvaz, Iran.
عبدالرحمن راسخ
Department of Statistics, Shahid Chamran University, Ahvaz, Iran.
محمدرضا آخوند
Department of Statistics, Shahid Chamran University, Ahvaz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :