The Impact of Task-Based Collaborative Output Activities on Learner Engagement in Writing Tasks
محل انتشار: مجله افق های زبان، دوره: 6، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 218
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_LGHOR-6-2_005
تاریخ نمایه سازی: 19 شهریور 1401
چکیده مقاله:
The present study explores the factors that shape learner engagement in writing tasks and the role that output-based instructions could perform in elevating the level of engagement. In so doing, to develop a measure for evaluating learner engagement in writing tasks, a pool of eight university teachers was interviewed and five university students participated in a think-aloud protocol and a total of ۱۳۹ English-major university students were asked to complete the newly-developed inventory. The result of inter-coder reliability was acceptable and Structural Equation Modeling (SEM) provided support for the factor structure of the measures. The final validated inventory comprised four factors and ۲۳ items. Following this, the findings obtained from an experiment on ۳۱ English-major students revealed that both types of task-based collaborative instructions including debating and dictogloss could elevate the level of students’ engagement in writing tasks. More specifically, the statistical analyses indicated that the debate-based instruction could increase the students’ engagement in writing tasks more than the dictogloss instruction. In the end, the linkage between task-based collaborative output activities, engagement in writing tasks, and engagement components were discussed, and the pedagogical implications were offered based on the results of the study.
کلیدواژه ها:
نویسندگان
قاسم مدرسی
Assistant Professor, Department of English, Quchan Branch, Islamic Azad University, Quchan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :