On some properties of the space of minimal prime ideals of 𝐶𝑐 (𝑋)
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 300
فایل این مقاله در 38 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CGASAT-17-1_003
تاریخ نمایه سازی: 1 شهریور 1401
چکیده مقاله:
In this article we consider some relations between the topological properties of the spaces X and Min(Cc (X)) with algebraic properties of Cc (X). We observe that the compactness of Min(Cc (X)) is equivalent to the von-Neumann regularity of qc (X), the classical ring of quotients of Cc (X). Furthermore, we show that if 𝑋 is a strongly zero-dimensional space, then each contraction of a minimal prime ideal of 𝐶(𝑋) is a minimal prime ideal of Cc(X) and in this case 𝑀𝑖𝑛(𝐶(𝑋)) and Min(Cc (X)) are homeomorphic spaces. We also observe that if 𝑋 is an Fc-space, then Min(Cc (X)) is compact if and only if 𝑋 is countably basically disconnected if and only if Min(Cc(X)) is homeomorphic with β۰X. Finally, by introducing zoc-ideals, countably cozero complemented spaces, we obtain some conditions on X for which Min(Cc (X)) becomes compact, basically disconnected and extremally disconnected.
کلیدواژه ها:
The space of minimal prime ideals ، strongly zero-dimensional space ، countably basically disconnected space ، countably cozero complemented space ، z^۰_c-ideals
نویسندگان
Zahra Keshtkar
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Rostam Mohamadian
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Mehrdad Namdari
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Maryam Zeinali
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :