Multi-objective optimization and online control of switched reluctance generator for wind power application
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 186
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IECO-4-1_004
تاریخ نمایه سازی: 20 تیر 1401
چکیده مقاله:
Fossil fuel combustion in power plants is the world’s most significant threat to people’s health and the environment. Recently, wind power, as a clean, sustainable and renewable source of energy, has attracted many researchers. The present paper studies how to maximize the extraction of wind power and the efficiency of a switched reluctance generator (SRG) by firing angles control. The proposed scenario comprises the optimization of turn-on and turn-off angles in the offline mode using a particle swarm optimization algorithm to control the system in the online mode with linear interpolation. The present approach simultaneously investigates the firing angles; also, it has simple structure, low execution time, and efficient convergence rate that are independent of machine characteristics (regardless of high nonlinearity of SRG). Furthermore, copper losses, as well as switching and conduction losses of semiconductors, were considered in simulations to achieve a more realistic outcome. Ultimately, the simulation results of a typical three-phase ۶/۴ generator using Matlab confirmed the validity of the presented control strategy that can easily find applications in the future.
کلیدواژه ها:
Switched reluctance generators ، control of firing angles ، Wind turbine ، Sustainable energy ، and Particle swarm optimization
نویسندگان
Hojjat Hajiabadi
Faculty of Electrical and Computer Engineering, University of Birjand
Mohsen Farshad
Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
MohammadAli Shamsinejad
Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :