Analyzing the Advantage of Combination of Density Forecasts in Tehran Stock Exchange
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 180
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IECO-4-1_003
تاریخ نمایه سازی: 20 تیر 1401
چکیده مقاله:
Today, stock market plays a key role in the economy of any country and is considered as one of the growth indicators of any economy. Gaining the skills of gathering and analyzing data simultaneously, as well as using this knowledge in economic investigations, make time and precision factors to be the drawcard of any investor in competition with others. Therefore, having a predictive approach with the lowest degree of error will lead to smarter management of resources. Due to the complex and stochastic nature of the stock market, conventional forecasting approaches in this field have usually faced serious challenges, most notably losing the robustness when the data type changed over time. Moreover, by focusing on point forecasting, some useful statistical information about the objective random variable has been ignored inadvertently, undermining the prediction efficiency. The focus of this study is on density forecasting models which, unlike point forecasting, contain a description of uncertainty. Also, to take advantage of the diversity and robustness features of the combination, instead of an individual prediction, a combination of the density forecasting given by the different structures of ARMA, ANN, and RBF models is presented. In order to analyze the capabilities of these approaches in Tehran Stock Exchange (TSE), two basic methods of this category have been used to predict the price of MAPNA stock -one of the fifty active companies in this market- in the period ۲۰۱۲ to ۲۰۱۹.
کلیدواژه ها:
نویسندگان
S.Raheleh Shahrokhi
Faculty of Electrical & Computer Engineering, Tarbiat Modares University, Tehran, Iran.
Hamid Khaloozadeh
Department of Systems and Control Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology
HamidReza Momeni
Department of Systems and Control, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :