FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING

سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 216

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-9-1_003

تاریخ نمایه سازی: 7 تیر 1401

چکیده مقاله:

The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major roles on search process of GSA. Then the improved GSA (namely Fuzzy-GSA) is employed to construct a novel data mining algorithm for classification rule discovery from reference data sets. Extensive experimental results on different benchmarks and a practical pattern recognition problem with nonlinear, overlapping class boundaries and different feature space dimensions are provided to show the powerfulness of the proposed method. The comparative results illustrate that performance of the proposed FGSA-miner considerably outperforms the standard GSA. Also it is shown that the performance of the FGSA-miner is comparable to, sometimes better than those of the CN۲ (a traditional data mining method) and similar approach which have been designed based on other swarm intelligence algorithms (ant colony optimization and particle swarm optimization) and evolutionary algorithm (genetic algorithm).

نویسندگان

Seyed Hamid Zahiri

Department of Electrical Engineering, Faculty of Engineering, Birjand University, Birjand, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • P. Clark and T. Niblet, The CN۲ induction algorithm, Mach. ...
  • A. E. Eiben, R. Hinterding and Z. Michalewicz, Parameter control ...
  • A. Freitas, A survey of evolutionary algorithms for data mining ...
  • R. Kohavi and M. Sahami, Error-based and entropy-based discretization of ...
  • P. M. Mary and S. Marimuthu, Minimum time swing up ...
  • E. Mehdizadeh, S. Sadi-nezhad and R. Tavakkoli-moghaddam, Optimization of fuzzy ...
  • F. Moayedi, R. Boostani, A. R. Kazemi, S. Katebi and ...
  • R. S. Parpinelli, H. S. Lopes and A. A. Freitas, ...
  • E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, GSA: A Gravitational ...
  • R. Sarkar, H. abbas and C. Newton, Introducing data mining ...
  • Y. Shi, R. Eberhart and Y. Chen, Implementation of evolutionary ...
  • T. Sousa, A Silva and A. Neves, Particle swarm based ...
  • M. Stenes and H. Robous, GA-fuzzy modeling and classification: complexity ...
  • S. H. Zahiri, H. Zareie and M. R. Agha-ebrahimi, Automatic ...
  • S. H. Zahiri and S. A. Seyedin, Swarm intelligence based ...
  • S. H. Zahiri, H. Rajabi Mashhadi and S. A. Seyedin, ...
  • نمایش کامل مراجع