A hybrid multi-objective algorithm to solve a cellular manufacturing scheduling problem with human resource allocation
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 204
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-9-2_009
تاریخ نمایه سازی: 30 خرداد 1401
چکیده مقاله:
A Cellular Manufacturing System (CMS) is a suitable system for the economic manufacture of part families. Scheduling the manufacturing cells plays an effective role in successful implementation of the manufacturing system. Due to the fact that in the CMS, bottleneck machine and human resources are two important factors, which so far have not been studied simultaneously in a mathematical model, there should be a model to consider them. Therefore, this research develops a bi-objective model for CMS in a three-dimensional space of machine-part and human resources. The main objective is to minimize the maximum completion time of all tasks in the system and reduce the number of intercellular translocation based on bottleneck machines’ motion and human resources. Due to the NP-hardness of the studied problem, applying the conventional solution methods is very time-consuming, and is impossible in large dimensions. Therefore, the use of metaheuristic methods will be useful. The accuracy of the proposed model is investigated using LINGO by solving a small example. Then, to solve the problem in larger dimensions, a hybrid Multi-Objective Tabu Search-Genetic Algorithm (MO-TS-GA) is designed and numerical results are reported for several examples.
کلیدواژه ها:
نویسندگان
Vahid Razmjoei
Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran.
Iraj Mahdavi
Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran.
Selma Gutmen
Faculty of Engineering Management, Poznan University of Technology, Poznan, Poland.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :