A Hybrid Deep Network Representation Model for Detecting Researchers’ Communities

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 194

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-10-2_008

تاریخ نمایه سازی: 28 خرداد 1401

چکیده مقاله:

Recently, network representation has attracted many research works mostly concentrating on representing of nodes in a dense low-dimensional vector. There exist some network embedding methods focusing only on the node structure and some others considering the content information within the nodes. In this paper, we propose HDNR; a hybrid deep network representation model, which uses a triplet deep neural network architecture that considers both the node structure and content information for network representation. In addition, the author's writing style is also considered as a significant feature in the node content information. Inspired by the application of deep learning in natural language processing, our model utilizes a deep random walk method to exploit inter-node structures and two deep sequence prediction methods to extract nodes' content information. The embedding vectors generated in this manner were shown to have the ability of boosting each other for learning optimal node representation, detecting more informative features and ultimately a better community detection. The experimental results confirm the effectiveness of this model for network representation compared to other baseline methods.

نویسندگان

A. Torkaman

Department of Computer, South Tehran Branch, Islamic Azad University, Tehran, Iran

K. Badie

E-Services and E-Content Research Group, IT Research Faculty, ICT Research Institute, Tehran, Iran

A. Salajegheh

Department of Computer, South Tehran Branch, Islamic Azad University, Tehran, Iran

M. H. Bokaei

Department of Information Technology, ICT Research Institute, Tehran, Iran

Seyed F. Fatemi

Sharif University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Bhagat, G. Cormode, and S. Muthukrishnan, "Node Classification in ...
  • P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, ...
  • Gao, Fei, Katarzyna Musial, Colin Cooper, and Sophia Tsoka., "Link ...
  • D. L.-N. a. J. Kleinberg, "The link-prediction problem for social ...
  • Jamali, Mohsen and Martin Ester, "A matrix factorization technique with ...
  • X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, ...
  • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques ...
  • J. B. Tenenbaum, V. De Silva, and J. C. Langford, ...
  • S. T. Roweis and L. K. Saul, "Non-linear dimensionality reduction ...
  • T. F. Cox and M. A. Cox, "Multi-dimensional scaling," In: ...
  • S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, ...
  • A. Ahmed, N. Shervashidze, S. Narayanamurthy V. Josifovski, and A. ...
  • Ou. M, Cui. P, Pei. J. Zhang. Z, and Zhu. ...
  • Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., ...
  • T. Mikolov, K. Chen, G.Corrado, and J. Dean, "Efficient estimation ...
  • B. Perozzi, R. Al-Rfou, and S. Skiena, "“Deepwalk: Online learning ...
  • A. Grover and J. Leskovec, "node۲vec: Scalable Feature Learning for ...
  • Tang J, Qu M, Wang M, Zhang M, Yan J, ...
  • D. Wang, P. Cui, and W. Zhu, "Structural deep network ...
  • David M Blei, Andrew Y Ng, and Michael Jordan, "Latent ...
  • Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward ...
  • Pan, Shirui, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang ...
  • Keikha, Mohammad Mehdi, Maseud Rahgozar, and Masoud Asadpour, "Community aware ...
  • Hongyan Xu, Hongtao Liu, Wenjun Wang, Yueheng Sun, NE-FLGC: Network ...
  • Quoc V Le and Tomas Mikolov, "Distributed representations of sentences ...
  • Chen, Haochen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, "A ...
  • Abbas Ahmed and Josef Holmberg, "Information extraction from short text ...
  • Kozma, Robert, Cesare Alippi, Yoonsuck Choe, and Francesco Carlo Morabito, ...
  • Taheri, Aynaz, Kevin Gimpel, and Tanya Berger-Wolf, "Sequence-to-sequence modeling for ...
  • Cui, Yiming, Shijin Wang, and Jianfeng Li, "LSTM neural reordering ...
  • Greff, Klaus, Rupesh K. Srivastava, Jan Koutník, Bas R. Steunebrink, ...
  • Graves, Alex, Navdeep Jaitly, and Abdel-rahman Mohamed, "Hybrid speech recognition ...
  • Han, Song, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, ...
  • Chen, Minghai, Guiguang Ding, Sicheng Zhao, Hui Chen, Qiang Liu, ...
  • Aneja, Jyoti, Aditya Deshpande, and Alexander G. Schwing, "Convolutional image ...
  • Staudemeyer, Ralf C. , Eric Rothstein Morris, "Understanding LSTM-a tutorial ...
  • Afshine Amidi and Shervine Amidi, "Recurrent Neural Networks cheatsheet," [Online]. ...
  • Wang, Haohan, and Bhiksha Raj, "On the origin of deep ...
  • Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and ...
  • S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, ...
  • Jonathan Chang and David M Blei, "Relational topic models for ...
  • A. Reihanian, M. R. Feizi-Derakhshi, and H. S. Aghdasi, "Overlapping ...
  • Laurens Van Der Maaten and Geoffrey Hinton, "Visualizing data using ...
  • Günce Keziban Orman, Vincent Labatut, and Hocine Cherifi, "Qualitative Comparison ...
  • Batagelj, Vladimir, " Efficient algorithms for citation network analysis," arXiv ...
  • Garfield E, ": From Computational Linguistics to Algorithmic Historiography," in ...
  • Waltman, Ludo, and Erjia Yan., "PageRank-related methods for analyzing citation ...
  • Mariani, Manuel Sebastian, Matúš Medo, and François Lafond., "Early identification ...
  • Baggio, Jacopo A., Katrina Brown, and Denis Hellebrandt., "Boundary object ...
  • Zarezade, M., E. Nourani, and Asgarali Bouyer. "Community detection using ...
  • نمایش کامل مراجع