Convolutional Neural Networks with Different Dimensions for PolSAR Image Classification

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 163

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CSE-2-1_007

تاریخ نمایه سازی: 17 خرداد 1401

چکیده مقاله:

Efficiency of convolutional neural networks (CNNs) with different dimensions is assessed for polarimetric synthetic aperture radar (PolSAR) image classification in this work. This article is the extended version of the paper presented in “۴ International Conference on Soft Computing (CSC۲۰۲۱)”. A PolSAR image contains polarimetric and spatial information of materials present in the scene. So, processing of these information in one, two or three dimensions results in different outputs. Three simple architectures of CNNs with different dimensions are proposed for PolSAR image classification in this paper. A one dimensional CNN (۱D CNN) is suggested for polarimetric feature extraction. A ۲D CNN is presented for spatial feature extraction and a ۳D CNN is introduced for polarimetric-spatial feature extraction. The performance of CNNs are compared with morphological profile of PolSAR cube when fed to the support vector machine (SVM) and random forest (RF) classifiers. The experiments are done in two cases of using ۱% and ۵% training samples. Superiority of ۳D CNN compared to other methods is shown using different quantitative classification measures.

کلیدواژه ها:

نویسندگان

Maryam Imani

Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran