تحلیل حساسیت پارامترهای موثر بر عمق آبشستگی در پائین دست پایه های پل جفت با استفاده از ماشین آموزش نیرومند
محل انتشار: فصلنامه حفاظت منابع آب و خاک، دوره: 11، شماره: 3
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 220
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WSRCJ-11-3_002
تاریخ نمایه سازی: 24 اردیبهشت 1401
چکیده مقاله:
زمینه و هدف: آبشستگی موضعی به عنوان یکی از عوامل مهم که باعث گسیختگی سازه پل ها، موج شکن ها و اسکه ها می شود شناسایی شده است. پیچیدگی مکانیزم آبشستگی باعث شده است که این موضوع یکی از مهم ترین زمینه های مطالعاتی مهندسی عمران باشد. در سال-های اخیر، مطالعات فراوانی بر روی آبشستگی موضعی اطراف پایه های پل انجام گرفته است. به دلیل اهمیت زیاد پیش بینی و تخمین الگوی آبشستگی در مجاورت پایه های پل مطالعات فراوانی بر روی این نوع از سازه ها انجام شده است.روش پژوهش: در این مطالعه برای اولین بار با استفاده از روش جدید ماشین آموزش نیرومند (ELM)، عمق آبشستگی در مجاورت پایه های پل دوقلو شبیه سازی شد. ابتدا پارامترهای موثر شناسایی گردید و چهار مدل ELM توسعه داده شد. سپس به کمک شبیه سازی مونت کارلو و روش اعتبار سنجی ضربدری نتایج عددی اعتبار سنجی شدند. در ادامه تابع فعال سازی sin به عنوان بهترین تابع فعال-سازی تعیین شد. علاوه بر این نتایج ELM با مدل های شبکه عصبی مصنوعی مقایسه گردید که مدل های ELM مقادیر آبشستگی را با دقت بیشتری تخمین زدند. تحلیل عدم قطعیت برای مدل های برتر ELM و ANN اجرا گردید و برای مدل برتر یک رابطه پیشنهاد داده شد. برای کلیه پارامترهای ورودی تحلیل حساسیت مشتق نسبی (PDSA) نیز اجرا گردید. یافته ها: در میان توابع فعالسازی موجود، تابع sin دارای عملکردی بهینه در مقایسه با سایر توابع فعالسازی بود. با توجه به تجزیه و تحلیل نتایج مدلسازی، مدل ELM ۱ به عنوان مدل برتر معرفی شد. این مدل تابعی از کلیه پارامترهای ورودی بود. همچنین با حذف عدد فرود دقت مدل عددی به شکل قابل ملاحظهای کاهش یافت فلذا پارامتر مذکور نیز بهعنوان موثرترین پارامتر در مدلسازی آبشستگی در اطراف پایههای پل دوقلو توسط مدل ماشین آموزش نیرومند شناسایی شد.نتایج: با تجزیه و تحلیل نتایج مدلسازی، مدل برتر ELM معرفی کردید. نتایج مدلهای ELM با مدلهای ANN نیز مقایسه شد که نشان داده شد مدلهای ELM مقادیر آبشستگی را با دقت بیشتری شبیهسازی میکنند. برای مدل برتر ELM یک رابطه برای محاسبه عمق حفره آبشستگی پیشنهاد داده شد و در ادامه تحلیل عدم قطعیت نشان داد که این مدل دارای عملکردی بیشتر از مقدار واقعی بود. علاوه بر این تحلیل حساسیت مشتق نسبی برای پارامترهای ورودی نشان داد که با افزایش عدد فرود مقدار تابع هدف (عمق آبشستگی) افزایش می یابد.
کلیدواژه ها:
نویسندگان
سیامک امیری
دانشجوی دکتری منابع آب، گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه ایران.
محمد علی ایزدبخش
استادیار، گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه ایران.
سعید شعبانلو
دانشیار، گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه ایران.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :