Introduction to shared frailty Cox models with parametric and non-parametric distributions and their application in medical data

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 213

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JSMTA-2-1_009

تاریخ نمایه سازی: 19 اردیبهشت 1401

چکیده مقاله:

In survival data, it is typical for survival times to be clustered or depend on some unobserved covariates. This can be due to geographical clustering, subjects sharing common genes, specific socioeconomic level, or hereditary and racial characteristics, and other predisposition that cannot be measured and observed directly. Adjusting the effects of these unknown factors on the survival functions is necessary for the independence of survival times and the explanatory variables. The aim of this study is to introduce and compare Cox models with parametric and non-parametric shared frailty on brain stroke survival data. The results showed that non-parametric frailty model has better fitting than parametric distributions (AIC=۴۶۸۶ and BIC=۴۶۸۴), especially when the exact parametric distribution is not known. According to the results of best model, following variables were statistical significant; BMI (HR=۰.۹۷, P=۰.۰۴۵); Age (HR=۱.۰۴, p <۰.۰۰۱); HDL (HR=۱.۰۱, p <۰.۰۰۱); LDL (HR=۰.۹۹, p <۰.۰۰۱); Hyperlipidemia (HR=۰.۷۲, p <۰.۰۱۴). The nonparametric frailty is desirable, due to potential misspecification of the parametric form and as a method for detecting clusters of groups with similar frailties.

نویسندگان

Navideh Nikmohammadi

Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.

Parvin Sarbakhsh

Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.

Morteza shamshirgaran

Associate Professor of Epidemiology Healthy Associate Professor of Epidemiology Healthy Ageing Research Center Neyshabur University of Medical Sciences

Neda Gilani

Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.