Fuzzy Centralized Coordinate Learning and Hybrid Loss for Human Activity Recognition
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 35، شماره: 1
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 261
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-35-1_016
تاریخ نمایه سازی: 10 اردیبهشت 1401
چکیده مقاله:
Human activity recognition has been a popular research topic in recent years. The rapid development of deep learning techniques has greatly helped researchers to achieve success in this field. But the researches in the literature, usually ignore the distribution of features in the coordinate space despite its great effect on the convergence status of network and activities classification. This paper proposes a hybrid method based on fuzzy centralized coordinate learning and a hybrid loss function to overcome the explained constraint. The fuzzy centralized coordinate learning induces features to be dispersedly spanned across all quadrants of the coordinate space. This causes the angle between the feature vectors of the activity classes to increase significantly. Furthermore, a hybrid loss function is suggested to increase the discriminative power of the proposed method. Our experiments were carried out on the OPPORTUNITY and the PAMAP۲ datasets. The proposed model has been compared with six machine learning and three deep learning methods for activity recognition. Experimental results showed that the proposed method outperformed all of the comparative methods due to the identification of discriminative features. The proposed method successfully enhanced the average accuracy by ۱۴.۹۹% and ۲.۹۴% on the PAMAP۲ and OPPORTUNITY datasets, respectively, compared to the deep learning methods.
کلیدواژه ها:
Human Activity Recognition ، Deep Learning ، Fuzzy Centralized Coordinate Learning ، hybrid loss function
نویسندگان
M. Bourjandi
Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
M. Yadollahzadeh Tabari
Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
M. Golsorkhtabaramiri
Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :