Fuzzy Centralized Coordinate Learning and Hybrid Loss for Human Activity Recognition

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 261

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-35-1_016

تاریخ نمایه سازی: 10 اردیبهشت 1401

چکیده مقاله:

Human activity recognition has been a popular research topic in recent years. The rapid development of deep learning techniques has greatly helped researchers to achieve success in this field. But the researches in the literature, usually ignore the distribution of features in the coordinate space despite its great effect on the convergence status of network and activities classification. This paper proposes a hybrid method based on fuzzy centralized coordinate learning and a hybrid loss function to overcome the explained constraint. The fuzzy centralized coordinate learning induces features to be dispersedly spanned across all quadrants of the coordinate space. This causes the angle between the feature vectors of the activity classes to increase significantly. Furthermore, a hybrid loss function is suggested to increase the discriminative power of the proposed method. Our experiments were carried out on the OPPORTUNITY and the PAMAP۲ datasets. The proposed model has been compared with six machine learning and three deep learning methods for activity recognition. Experimental results showed that the proposed method outperformed all of the comparative methods due to the identification of discriminative features. The proposed method successfully enhanced the average accuracy by ۱۴.۹۹% and ۲.۹۴% on the PAMAP۲ and OPPORTUNITY datasets, respectively, compared to the deep learning methods.

کلیدواژه ها:

Human Activity Recognition ، Deep Learning ، Fuzzy Centralized Coordinate Learning ، hybrid loss function

نویسندگان

M. Bourjandi

Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran

M. Yadollahzadeh Tabari

Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran

M. Golsorkhtabaramiri

Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Li, Frédéric, Kimiaki Shirahama, Muhammad Adeel Nisar, Lukas Köping, and ...
  • Ogbuabor, Godwin, and Robert La. "Human activity recognition for healthcare ...
  • Khan, Adil Mehmood, Y-K. Lee, Seok-Yong Lee, and T-S. Kim. ...
  • Shoaib, Muhammad, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and ...
  • Mobark, Mohammed, Suriayati Chuprat, and Teddy Mantoro. "Improving the accuracy ...
  • Chen, Zhenghua, Qingchang Zhu, Yeng Chai Soh, and Le Zhang. ...
  • Uddin, Md Taufeeq, Md Muttlaleb Billah, and Md Faisal Hossain. ...
  • Fan, Liwei, Kim-Leng Poh, and Peng Zhou. "A sequential feature ...
  • Bustoni, I. A., I. Hidayatulloh, A. M. Ningtyas, A. Purwaningsih, ...
  • Georgiou, Theodoros, Yu Liu, Wei Chen, and Michael Lew. "A ...
  • Dargan, Shaveta, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. ...
  • Feizi, A. "Convolutional gating network for object tracking." International Journal ...
  • Hassanpour, M., and H. Malek. "Learning Document Image Features With ...
  • Chikhaoui, Belkacem, and Frank Gouineau. "Towards automatic feature extraction for ...
  • Panwar, Madhuri, S. Ram Dyuthi, K. Chandra Prakash, Dwaipayan Biswas, ...
  • Cruciani, Federico, Anastasios Vafeiadis, Chris Nugent, Ian Cleland, Paul McCullagh, ...
  • Ordóñez, Francisco Javier, and Daniel Roggen. "Deep convolutional and lstm ...
  • Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Softmax units for ...
  • Sun, Jian, Yongling Fu, Shengguang Li, Jie He, Cheng Xu, ...
  • Huang, Guang-Bin, Hongming Zhou, Xiaojian Ding, and Rui Zhang. "Extreme ...
  • Liu, Weiyang, Yandong Wen, Zhiding Yu, and Meng Yang. "Large-margin ...
  • Liu, Weiyang, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, ...
  • Qi, Xianbiao, and Lei Zhang. "Face recognition via centralized coordinate ...
  • Huang, Gary B., Marwan Mattar, Tamara Berg, and Eric Learned-Miller. ...
  • Chen, Bor-Chun, Chu-Song Chen, and Winston H. Hsu. "Cross-age reference ...
  • Deng, Weihong, Jiani Hu, Nanhai Zhang, Binghui Chen, and Jun ...
  • Zheng, Tianyue, Weihong Deng, and Jiani Hu. "Cross-age lfw: A ...
  • Wolf, Lior, Tal Hassner, and Itay Maoz. "Face recognition in ...
  • Lara, Oscar D., and Miguel A. Labrador. "A survey on ...
  • Lin J, Keogh E, Lonardi S, Chiu B. "A symbolic ...
  • Cook, Diane J., and Narayanan C. Krishnan. "Activity learning: discovering, ...
  • Lawal, Isah A., and Sophia Bano. "Deep human activity recognition ...
  • Zohrevand, A., Imani, Z. and Ezoji, M.. "Deep Convolutional Neural ...
  • Gers, Felix A., Nicol N. Schraudolph, and Jürgen Schmidhuber. "Learning ...
  • Chavarriaga, Ricardo, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digumarti, Gerhard ...
  • Reiss, Attila, and Didier Stricker. "Introducing a new benchmarked dataset ...
  • Zeiler, Matthew D. "Adadelta: an adaptive learning rate method." arXiv ...
  • Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification ...
  • نمایش کامل مراجع