Influence Maximization using Time Delay based Harmonic Centrality in Social Networks

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 296

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TJEE-51-3_006

تاریخ نمایه سازی: 29 فروردین 1401

چکیده مقاله:

With the extension of social networks, research on influence maximization (IM) in time-sensitive graphs has increased in recent years. IM is a problem to find a seed set with k nodes to maximize the information propagation range in the graph. Most of the research in this area consists of greedy, heuristic, meta-heuristic methods. However, most of these methods ignore the time-sensitivity to propagation delay and duration. The preceding time-sensitive centrality measures as a part of heuristic approaches take the propagation delay but only consider the nodes locally so that each graph node considers only the direct neighbors. Based on the above analysis, this article focuses on the time-sensitive IM problem. Here, a propagation value for each path in the graph is defined in terms of the probability of affecting through the edge and freshness amount of the edge. To solve the problem, we propose time-sensitive centrality measures that consider propagation value and both the direct and the indirect neighbors. Therefore, four measures of time-sensitive closeness centrality (TSCloseness), time-sensitive harmonic (TSHarmonic), time-sensitive decay centrality (TSDecay), and time-sensitive eccentricity centrality (TSEccentricity) were proposed. The experiments on five datasets demonstrate the efficiency and influence performance of the TSHarmonic measure on evaluation metrics.

نویسندگان

سلمان مختارزاده

Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran

بهزاد زمانی دهکردی

Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran/ Department of Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

محمد مصلح

Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran

علی براتی

Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Huang, H. Shen, Z. Meng, H. Chang, H. He, ...
  • C. Budak, D. Agrawal, A. El Abbadi, “Limiting the spread ...
  • M. A. Manouchehri, M. S. Helfroush, H. Danyali, “A Theoretically ...
  • D. Kempe, J. Kleinberg, É. Tardos, “Maximizing the spread of ...
  • A. Mohammadi, M. Saraee, A. Mirzaei, “Time-sensitive influence maximization in ...
  • M. Adineh, M. Nouri-Baygi, “High Quality Degree Based Heuristics for ...
  • P. Domingos, M. Richardson, “Mining the network value of customers”, ...
  • J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, ...
  • A. Goyal, W. Lu, L.V.S. Lakshmanan, “CELF++: optimizing the greedy ...
  • Y. Wang, G. Cong, G. Song, K. Xie, “Community-based greedy ...
  • K. Jung, W. Heo, and W. Chen, “IRIE: Scalable and ...
  • A. Sheikhahmadi, M. A. Nematbakhsh, A. Zareie, “Identification of influential ...
  • W. Chen, C. Wang, Y. Wang, “Scalable influence maximization for ...
  • W. Chen, Y. Yuan, L. Zhang, “Scalable Influence Maximization in ...
  • A. Zareie, A. Sheikhahmadi, M. Jalili, “Identification of influential users ...
  • A. Zareie, A. Sheikhahmadi, M. Jalili, M.S.K. Fasaei, “Finding influential ...
  • Ch. Salavati, A. Abdollahpouri, Zh. Manbari, “A Multi-objective Algorithm for ...
  • M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, ...
  • W. Chen, Y. Wang, S. Yang, “Efficient influence maximization in ...
  • X. Wang, Y. Su, C. Zhao, D. Yi, “Effective identification ...
  • A. Sheikhahmadi, M. A. Nematbakhsh, and A. Shokrollahi, “Improving detection ...
  • A. Zareie, A. Sheikhahmadi, K. Khamforoosh, “Influence maximization in social ...
  • L. Katz, “A new status index derived from sociometric analysis”, ...
  • A. Zareie, A. Sheikhahmadi, and R. Sakellariou, “A composite centrality ...
  • K. Saito, M. Kimura, K. Ohara, H. Motoda, “Learning continuous-time ...
  • W. Chen, W. Lu, N. Zhang, “Time-critical influence maximization in ...
  • J. Kim, W. Lee, H. Yu, “CT-IC: Continuously activated and ...
  • R. Yan, Y. Li, D. Li, Y. Zhu, Y. Wang, ...
  • N. Ohsaka, Y. Yamaguchi, N. Kakimura, K.I. Kawarabayashi, “Maximizing time-decaying ...
  • M. Hu, Q. Liu, H. Huang, X. Jia, “Time-sensitive influence ...
  • M. Huiyu, C. Jiuxin, Y. Tangfei, B. Liu, “Topic based ...
  • Y. Wang, Y. Zhang, F. Yang, D. Li, X. Sun, ...
  • A. Goyal, F. Bonchi, L.V.S. Lakshmanan, “Learning influence probabilities in ...
  • B. Liu, G. Cong, D. Xu, Y. Zeng, “Time constrained ...
  • B. Liu, G. Cong, Y. Zeng, D. Xu, Y.M. Chee, ...
  • L.C. Freeman, “Centrality in social networks conceptual clarification”, Social Networks, ...
  • L.C. Freeman, “A set of measures of centrality based on ...
  • M.O. Jackson, “Social and economic networks”, Princeton university press, ۲۰۱۰ ...
  • P. Crescenzi, G. d’Angelo, L. Severini, Y. Velaj, “Greedily improving ...
  • U. Brandes, “A faster algorithm for Betweenness centrality”, Journal of ...
  • A. Raychaudhuri, S. Mallick, A. Sircar, S. Singh, “Identifying Influential ...
  • P. Jia, J. Liu, C. Huang, L. Liu, C. Xu, ...
  • S. Babaei S. Molaei M. Salehi, “Modeling Information Diffusion in ...
  • J. Kunegis, “Konect: the koblenz network collection”, in Proceedings of ...
  • J. Leskovec, D. Huttenlocher, J. Kleinberg, “Predicting Positive and Negative ...
  • نمایش کامل مراجع