PyIT-MLFS: a Python-based information theoretical multi-label feature selection library
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 387
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_RIEJ-11-1_002
تاریخ نمایه سازی: 15 فروردین 1401
چکیده مقاله:
Multi-label learning is an emerging research direction that deals with data in which an instance may belong to multiple class labels simultaneously. As many multi-label data contain very large feature space with hundreds of irrelevant andredundant features, multi-label feature selection is a fundamental pre-processing tool for selecting a subset of most representative and discriminative features. This paper introduces a Python-based open-source library that provides the state-ofthe-art information theoretical filter-based multi-label feature selection algorithms. The library, called PyIT-MLFS, is designed to facilitate the development of new algorithms. It is the first comprehensive open-source library for implementing algorithms of multilabel feature selection. Moreover, it provides a high-level interface that enables the end-users to test and compare different already implemented algorithms. PyIT-MLFS is available from https://github.com/Sadegh۲۸/PyIT-MLFS.
کلیدواژه ها:
نویسندگان
Sadegh Eskandari
Department of Computer Science, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :