Comparative Analysis between Active Contour and Otsu Thresholding Segmentation Algorithms in Segmenting Brain Tumor Magnetic Resonance Imaging

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 147

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JITM-12-6_004

تاریخ نمایه سازی: 25 بهمن 1400

چکیده مقاله:

The accuracy of brain tumor detection and segmentation are greatly affected by tumors’ location, shape, and image properties. In some situations, brain tumor detection and segmentation processes are greatly complicated and far from being completely resolved. The accuracy of the segmentation process significantly influences the diagnosis process, such as abnormal tissue detection, disease classification, and assessment. However, medical images, in particular, the Magnetic Resonance Imaging (MRI), often include undesirable artefacts such as noise, density inhomogeneity, and partial volume effects. Although many segmentation methods have been proposed, the accuracy of the segmentation results can be further improved. Subsequently, this study attempts to provide very important properties about the size, initial location and shape of tumors known as Region of Interest (RoI) to kick-start the segmentation process. The MRI consists of a sequence of images (MRI slices) of a particular person and not one image. Our method chooses the best image among them based on the tumor size, initial location and shape to avoid the partial volume effects. The selected algorithms to test our method are Active Contour and Otsu Thresholding algorithms. Several experiments are conducted in this research using the BRATS standard dataset that consist of ۱۰۰ samples. These experiments comprised of MRI slices of ۶۵ patients. The proposed method is evaluated by the similarity coefficient as a standard measure using Dice, Jaccard, and BF scores. The results revealed that the Active Contour algorithm has higher segmentation accuracy when tested across the three different similarity coefficients. Moreover, the achieved results of the two algorithms verify the ability of the proposed method to choose the best RoIs of the MRI samples.

کلیدواژه ها:

Brain tumor ، Magnetic Resonance Imaging (MRI) ، Segmentation ، Active contour ، Otsu threshold

نویسندگان

Husham

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja ۸۶۴۰۰, Johor, Malaysia.

Mustapha

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja ۸۶۴۰۰, Johor, Malaysia.

Mostafa

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja ۸۶۴۰۰, Johor, Malaysia.

Al-Obaidi

Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja ۸۶۴۰۰, Johor, Malaysia.

Mohammed

College of Computer Science and Information Technology, University of Anbar, ۱۱ Ramadi, ۵۵ Anbar, Iraq.

Abdulmaged

Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh ۸۴۶۰۰, Johor, Malaysia.

George

Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore ۶۴۱۱۱۴, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A Vese, L., F Chan, T. (۲۰۰۲). A Multiphase Level ...
  • Abd Ghani, M.K., Mohammed, M.A., Arunkumar, N., Mostafa, S.A., Ibrahim, ...
  • Arnab, A., Zheng, S., Jayasumana, S., Romera-Paredes, B., Larsson, M., ...
  • Arunkumar, N., Mohammed, M.A., Ghani, M.K.A., Ibrahim, D.A., Abdulhay, E., ...
  • Arunkumar, N., Mohammed, M.A., Mostafa, S.A., Ibrahim, D.A., Rodrigues, J.J. ...
  • Classification of Brain Tumor by Combination of Pre-Trained VGG۱۶ CNN [مقاله ژورنالی]
  • Cao, X., Zhou, F., Xu, L., Meng, D., Xu, Z., ...
  • Chen, J., Guan, B., Wang, H., Zhang, X., Tang, Y., ...
  • Csurka, G., Larlus, D., Perronnin, F., & Meylan, F. (۲۰۱۳). ...
  • Essadike, A., Ouabida, E., Bouzid, A. (۲۰۱۸). Brain tumor segmentation ...
  • Liu, P., Dou, Q., Wang, Q. and Heng, P.A. (۲۰۲۰). ...
  • Ma, C., Luo, G., Wang, K. (۲۰۱۸). Concatenated and Connected ...
  • Makropoulos, A., Counsell, S.J., Rueckert, D. (۲۰۱۸). A review on ...
  • Mohammed, M. A., Abdulkareem, K. H., Al-Waisy, A. S., Mostafa, ...
  • Mohammed, M.A., Ghani, M.K.A., Arunkumar, N.A., Mostafa, S.A., Abdullah, M.K. ...
  • Mohammed, M.A.; Abdulkareem, K.H.; Mostafa, S.A.; Ghani, M.K.A.; Maashi, M.S.; ...
  • Obaid, O.I., Mohammed, M.A., Ghani, M.K.A., Mostafa, A. and Taha, ...
  • Sharif, M.I., Li, J.P., Khan, M.A. and Saleem, M.A. (۲۰۲۰). ...
  • Sharma, A., Kumar, S. and Singh, S.N. (۲۰۱۹). Brain tumor ...
  • Song, Y., Wu, Y., Dai, Y.(۲۰۱۶). A new active contour ...
  • Soni, P. and Chaurasia, V. (۲۰۱۹). MRI segmentation for computer-aided ...
  • Sun, Z., Qiao, Y., Lelieveldt, B. P., Staring, M., & ...
  • Suresh, S., & Lal, S. (۲۰۱۶). An efficient cuckoo search ...
  • Thada, V., & Jaglan, V. (۲۰۱۳). Comparison of jaccard, dice, ...
  • Tiwari, A., Srivastava, S. and Pant, M. (۲۰۲۰). Brain tumor ...
  • Yang, J., Li, X., Xu, J., Cao, Y., Zhang, Y., ...
  • Zhao, W., Xu, X., Zhu, Y., & Xu, F. (۲۰۱۸). ...
  • نمایش کامل مراجع