Prediction of Survival and Metastasis in Breast Cancer using Machine learning Classifiers

  • سال انتشار: 1400
  • محل انتشار: پنجمین کنگره بین المللی سرطان
  • کد COI اختصاصی: CANCERMED05_094
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 162
دانلود فایل این مقاله

نویسندگان

S Sohrabi

Shahid Beheshti University of Medical Sciences, Department of Medical Informatics, Tehran, Iran

A Atashi

Department of E-Health, Virtual School, Tehran University of Medical Sciences, Tehran, Iran c Medical Informatics Department, Breast Cancer Research Center, Motamed cancer institute (ACECR), Tehran, Iran

چکیده

Introduction: Distant organ tumor dissemination is a major cause of breast cancer-related deaths. The majority of BC-related deaths result from unsuccessful treatment of metastases; therefore, it is important to develop therapies that prevent dissemination of tumor cells at an early stage. Materials and Methods: The database used in this paper is provided by Tehran university of Motamed Cancer Institute (MCI) breast cancer research center. It contains of ۷۸۳۴ records of breast cancer patients clinical and risk factors data. There were ۱۶۰۵ patients (۲۰.۵%) with breast cancers (malignant) metastasis and the remaining ۶۲۲۹ patients (۷۹.۵%) without breast cancers metastasis.in addition ۳۰.۴% of patients were death status, alive patients were ۷۹.۶% SVM and Navebasyan, C۵ models were developed using ۲۰ fields (risk factor) of the database. The present study divided the data into ۱۰ folds where ۱ fold for testing and ۹ folds for training as a way of validating the ۱۰-fold crossover validation. Ultimately, the comparison of the models was made based on sensitivity, specificity, accuracy indicators. Results: The result were shown SVM model accuracy, Nave Bayesian Sensitivity and C۵ Specificity were better than another models in survival Status. In metastasis Status shown Nave Bayesian Accuracy, C۵ Sensitivity and SVM Specificity were better than another models in metastasis Status. Conclusion: Based on these findings, the machine learning algorism using decision three, SVM and Nave Bayesian classifiers predicted that ۹۳.۷۱% of the tumor presented at stage IV, indicating that the tumors can spread to the other region of the body. And SVM predicted with Accuracy ۹۷.۴۵% of breast cancer patient have survival.

کلیدواژه ها

Breast Cancer, datamining, metastasis, survival

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.