تخمین تولید محصول کلزا مبتنی بر سری زمانی داده های سنجش از دور
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 218
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GIS-13-3_004
تاریخ نمایه سازی: 13 آذر 1400
چکیده مقاله:
شاخص های طیفی پوشش گیاهی به منزله ابزاری مناسب برای تخمین میزان تولید محصولات کشاورزی استفاده می شوند. بااین حال، تعداد محدود تصاویر از عوامل اصلی کاهش کارآیی شاخص ها به منظور تخمین تولید شمرده می شود. از سوی دیگر، ارزیابی توانایی شاخص ها در تخمین تولید از راه ترکیب داده های مادیس و لندست، در مواردی که تعداد داده های لندست کم باشد، کمتر مورد توجه قرار گرفته است. هدف تحقیق حاضر، در گام نخست، معرفی شاخص ها یا شاخص منتخب در تخمین تولید کلزا و در گام بعدی، استفاده از تکنیک های تلفیق داده برای افزایش کارآیی شاخص منتخب است. کلزا ازجمله محصولات کشاورزی است که، به دلیل گل دهی در دوره رشد، ویژگی های طیفی خاصی دارد. در این تحقیق، پایگاه داده ای از میزان تولید محصول کلزا و سری زمانی داده های لندست و مادیس کشت و صنعت مغان تهیه و سپس ده شاخص متفاوت به قصد تخمین تولید کلزا ارزیابی شد. در ادامه، رابطه میزان تولید با شاخص پیشنهادی بررسی و مشخص شد که شاخصNDYI ، در طول زمان گل دهی، دقتی بیشتر از سایر شاخص ها دارد (r = ۰.۷۳). با تلفیق داده های سری زمانی لندست و مادیس مبتنی بر الگوریتم مدل تطبیقی ادغام بازتابندگی مکانی و زمانی بهبودیافته (ESTARFM)، همبستگی و RMSE (kg/ha) به ترتیب ۷% و ۰.۱۱ افزایش و کاهش یافت. تحقیق حاضر نشان داد که استفاده از تکنیک های تلفیق داده امکان افزایش کارآیی شاخص های طیفی را به منظور تخمین تولید محصول فراهم می کند.
کلیدواژه ها:
نویسندگان
داود عاشورلو
استادیار مرکز مطالعات سنجش از دور وGIS ، دانشکده علوم زمین، دانشگاه شهید بهشتی
حمید صالحی شهرابی
دانشجوی دکتری مرکز مطالعات سنجش از دور وGIS ، دانشکده علوم زمین، دانشگاه شهید بهشتی
حامد نعمت اللهی
مرکز مطالعات سنجش از دور وGIS ، دانشکده علوم زمین، دانشگاه شهید بهشتی
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :