Data Mining-based Structural Damage Identification of Composite Bridge using Support Vector Machine
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 4
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 163
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-9-4_001
تاریخ نمایه سازی: 8 آذر 1400
چکیده مقاله:
A structural health monitoring system contains two components, i.e. a data collection approach comprising a network of sensors for recording the structural responses as well as an extraction methodology in order to achieve beneficial information on the structural health condition. In this regard, data mining which is one of the emerging computer-based technologies, can be employed for extraction of valuable information from obtained sensor databases. On the other hand, data inverse analysis scheme as a problem-based procedure has been developing rapidly. Therefore, the aforesaid scheme and data mining should be combined in order to satisfy increasing demand of data analysis, especially in complex systems such as bridges. Consequently, this study develops a damage detection methodology based on these strategies. To this end, an inverse analysis approach using data mining is applied for a composite bridge. To aid the aim, the support vector machine (SVM) algorithm is utilized to generate the patterns by means of vibration characteristics dataset. To compare the robustness and accuracy of the predicted outputs, four kernel functions, including linear, polynomial, sigmoid, and radial basis function (RBF) are applied to build the patterns. The results point out the feasibility of the proposed method for detecting damage in composite slab-on-girder bridges.
کلیدواژه ها:
نویسندگان
M. Gordan
Department of Civil Engineering, University of Malaya, ۵۰۶۰۳ Kuala Lumpur, Malaysia.
Saeed R. Sabbagh-Yazdi
Department of Civil Engineering, K.N.TOOSI University of Technology, Tehran, Iran.
Z. Ismail
Department of Civil Engineering, University of Malaya, ۵۰۶۰۳ Kuala Lumpur, Malaysia.
Kh. Ghaedi
Department of Civil Engineering, University of Malaya, ۵۰۶۰۳ Kuala Lumpur, Malaysia
H. Hamad Ghayeb
Department of Civil Engineering, University of Malaya, ۵۰۶۰۳ Kuala Lumpur, Malaysia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :