Complexity indices for the travelling salesman problem and data mining

سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 210

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_COMB-1-1_006

تاریخ نمایه سازی: 29 آبان 1400

چکیده مقاله:

 we extend our previous work on complexity indices for the travelling salesman problem (TSP), summarized in cite{CvCK۳}, using graph spectral techniques of data mining. A complexity index is an invariant of an instance I by which we can predict the execution time of an exact algorithm for TSP for I. We consider the symmetric travelling salesman problem with instances I represented by complete graphs G with distances between vertices (cities) as edge weights (lengths). Intuitively, the hardness of an instance G depends on the distribution of short edges within G. Therefore we consider some short edge subgraphs of G (minimal spanning tree, critical connected subgraph, and several others) as non-weighted graphs and several their invariants as potential complexity indices. Here spectral invariants (e.g. spectral radius of the adjacency matrix) play an important role since, in general, there are intimate relations between eigenvalues and the structure of a graph. Since hidden details of short edge subgraphs really determine the hardness of the instance, we use techniques of data mining to find them. In particular, spectral clustering algorithms are used including information obtained from the spectral gap in Laplacian spectra of short edge subgraphs.

نویسندگان

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Ashok and T.K. Patra (۲۰۱۰). Locating phase transitions in ...
  • D. Cvetkovi' c, M. v Cangalovi' c and V. Kovav ...
  • D. Cvetkovi' c, M. v Cangalovi' c and V. Kovav ...
  • D. Cvetkovi' c, M. v Cangalovi' c and V. Kovav ...
  • D. Cvetkovi'c, P. Rowlinson and S. K. Simi'c (۲۰۰۹). An ...
  • D. Cvetkovi' c and S.K. Simi' c (۲۰۱۱). Graph spectra ...
  • M. Fiedler (۱۹۷۳). Algebraic connectivity of graphs. Czech. J. Math.. ...
  • G. Gutin and A. Punnen (۲۰۰۲). The Travelling Salesman Problem ...
  • E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys ...
  • K. Ko, P. Orponen, U. Sch" oning and O. Watanabe ...
  • U. von Luxburg (۲۰۰۷). A tutorial on spectral clustering. Stat. ...
  • C.R. Reeves and A.V. Eremeev (۲۰۰۴). Statistical analysis of local ...
  • B.D. Reyck and W. Herroelen (۱۹۹۶). On the use of ...
  • R. Sawilla (۲۰۰۸). A survey of data mining of graphs ...
  • نمایش کامل مراجع