Time-Dependent Scaling Patterns in Sarpol-e Zahab Earthquakes

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 218

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JSEE-20-2_003

تاریخ نمایه سازی: 5 آبان 1400

چکیده مقاله:

In this paper, the dynamics seismic activity and fractal structures in magnitude time series of Sarpol-e Zahab earthquakes are investigated. In this case, the dynamics seismic activity is analyzed through the evolution of the scaling parameter so-called Hurst exponent. By estimating the Hurst parameter, we can investigate how the consecutive earthquakes are related. It has been observed that more than one scaling exponent is needed to account for the scaling properties of earthquake time series. Therefore, the influence of different time-scales on the dynamics of earthquakes is measured by decomposing the seismic time series into simple oscillations associated with distinct time-scales. To this end, the empirical mode decomposition (EMD) method was used to estimate the locally long-term persistence signature derived from the Hurst exponent. As a result, the timedependent Hurst exponent, H(t), was estimated and all values of H>۰.۵ was obtained, indicating a long-term memory exists in earthquake time series. The main contribution of this paper is estimating H(t) locally for different time-scales and investigating the long-memory behavior exist in the non-stationary multifractal time-series. The time-dependent scaling properties of earthquake time series are associated with the relative weights of the amplitudes at characteristic frequencies. The superiority of the method is the simplicity and the accuracy in estimating the Hurst exponent of earthquakes in each time, without any assumption on the probability distribution of the time series.

کلیدواژه ها:

Empirical Mode Decomposition ، Timedependent Hurst parameter estimation ، Long-memory

نویسندگان

Yasaman Maleki

Alzahra University

Mostafa AllamehZadeh

International Institute of Earthquake Engineering and Seismology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Noemi, N., Tiziana D.M., and Tomaso A. (۲۰۱۶) Time-dependent scaling ...
  • Borgnat, P., Amblard, P.O., and Flandrin, P. (۲۰۰۵) Scale invariances ...
  • Bardet, J.M., Lang, G., Oppenheim, G., Philippe, A., Stoev, S., ...
  • Beran, J. (۱۹۹۴) Statistics for Long-Memory Processes. Monographs on Statistics ...
  • Coeurjolly, J.F. (۲۰۰۱) Estimating the parameters of a fractional Brownian ...
  • Mandelbrot, B.B. and van Ness, J.W. (۱۹۶۸) Fractional brownian motions, ...
  • Samorodnitsky, G. and Taqqu, M. (۱۹۹۴) Stable Non-Gaussian Random Processes: ...
  • Cajueiro, D.O. and Tabak, B.M. (۲۰۰۴) The Hurst exponent over ...
  • Cavanaugh, J.E., Wang, Y., and Davis, J.W. (۲۰۰۳) Locally self-similar ...
  • Goncalves, P. and Abry, P. (۱۹۹۷) Multiple window wavelet transform ...
  • Kent, J.T. and Wood, A.T.A. (۱۹۹۷) Estimating the fractal dimension ...
  • Stoev, S., Taqqu, M. S., Park, C., Michailidis, G., and ...
  • Wang, Y., Cavanaugh, J.E., and Song, C. (۲۰۰۱) Self-similarity index ...
  • Sammonds, P.R., Meredith, P.G., and Main, I.G. (۱۹۹۲) Role of ...
  • Main, I. (۱۹۹۶) Statistical physics, seismogenesis, and seismic hazard. Rev. ...
  • Turcotte, D.L. (۱۹۹۷) Fractals and Chaos in Geology and Geophysics. ...
  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., ...
  • Huang, N.E., Wu, M.L., Qu, W., Long, S.R., and Shen, ...
  • King, F. (۲۰۰۹) Hilbert Transforms. Encyclopedia of Mathematics and its ...
  • Zhu, B., Wang, P., Chevallier, J. and Wei, Y. (۲۰۱۳) ...
  • Premanode, B. and Toumazou, C. (۲۰۱۳) Improving prediction of exchange ...
  • Cheng, C.H. and Wei, L.Y. (۲۰۱۴) A novel time-series model ...
  • Nava, N., Matteo, T.D., and Aste, T. (۲۰۱۶) Anomalous volatility ...
  • نمایش کامل مراجع