Improving Stock Return Forecasting by Deep Learning Algorithm
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 186
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-4-3_001
تاریخ نمایه سازی: 7 مهر 1400
چکیده مقاله:
Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has been used to improve return forecasting and then compare the results with historical average methods as bench mark model and use Diebold and Mariano’s and West’s statistic (DMW) for statistical evaluation. Results indicate that the applied DP model has higher accuracy compared to historical average model. It also indicates that out of sample prediction improvement does not always depend on high input variables numbers. On the other hand when using gold price as input variables, it is possible to improve this forecasting capability. Result also indicate that gold price has better accuracy than Goyal's variable to predicting out of sample return.
کلیدواژه ها:
نویسندگان
Zahra Farshadfar
Departments of Economics, College of Humanities, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
Marcel Prokopczuk
Institute for Financial Markets, Leibniz University Hannover, Hannover, Germany.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :