Rice Classification with Fractal-based Features based on Sparse Structured Principal Component Analysis and Gaussian Mixture Model

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 279

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-9-2_010

تاریخ نمایه سازی: 20 مرداد 1400

چکیده مقاله:

Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and texture-based features are used to yield the desired results in the classification procedure. This paper proposes a classification algorithm to detect different rice types by extracting features from the bulk samples. The feature space in this algorithm includes the fractal-based features of the extracted coefficients from the wavelet packet transform analysis. This feature vector is combined with other texture-based features and used to learn a model related to each rice type using the Gaussian mixture model classifier. Also, a sparse structured principal component analysis algorithm is applied to reduce the dimension of the feature vector and lead to the precise classification rate with less computational time. The results of the proposed classifier are compared with the results obtained from the other presented classification procedures in this context. The simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the combinational features is able to detect precisely the type of rice grains with more than ۹۹% accuracy. Also, the proposed algorithm can detect the rice quality for different percentages of combination with other rice grains with ۹۹.۷۵% average accuracy.

کلیدواژه ها:

Rice classification ، Wavelet packet transform ، Fractal-based feature ، Sparse structured principal component analysis ، Gaussian mixture model

نویسندگان

S. Mavaddati

Department of Engineering and Technology, University of Mazandaran, Babolsar, Iran.

S. Mavaddati

Sari Agricultural Sciences and Natural Resources University, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Food and agriculture organization of the United nations (FAO), “Rice ...
  • K. P. Neelamma, S. M. Virendra, and M. Y. Ravi, ...
  • S. Majumdar, and D. S. Jayas, "Classification of cereal grains ...
  • N. S. Visen, D. S. Jayas, J. Paliwal, and N. ...
  • J. Paliwal, M. S. Borhan, and D. S. Jayas, "Classification ...
  • Z. Y. Liu, F. Cheng, Y. B. Ying, and X. ...
  • B. Verma, "Image processing techniques for grading & classification of ...
  • M. Jinorose, S. Prachayawarakorn, and S. Soponronnarit, "Development of a ...
  • G. V. Dalen, "Determination of the size distribution and percentage ...
  • L. Pabamalie, and H. Premaratne, "An intelligent rice quality classifier," ...
  • M. Hatami, A. Rahmanididar, J. Khazaee, "Identification of common Iranian ...
  • S. Faiazi, M. H. Abaspourfard, S. A. Monajemi, H. Sadrnia, ...
  • F. A. Mousavirad, and K. Mollazade, "Real time identification of ...
  • F. A. Mousavirad, and K. Mollazade, "Identification of Rice Variaties ...
  • I. Golpour, J. Amiripanah, R. Amirichaichan, and J. Khazaee, "Detection ...
  • S. Mavaddati, "Rice classification and quality detection based on sparse ...
  • S. J. Mousavirad, and F. Akhlaghiantab, "Design of an expert ...
  • S. Mavaddati, "Sparse structured principal component analysis and model learning ...
  • A. F. Costa, G. E. Humpire-Mamani, and A. J. M. ...
  • T. Ojala, and M. Pietikäinen, "Unsupervised texture segmentation using feature ...
  • S. Majumdar, D. S. Jayas, "Classification of cereal grains using ...
  • M. Nixon, A. Aguado, Feature extraction & image processing, ۲nd ...
  • J. Flusser, T. Suk, and B. Zitová, Moments and moment ...
  • I.T. Jolliffe, Principal Component Analysis, Springer, ۲nd edition, ۲۰۰۲ ...
  • H. Zou, T. Hastie, R. Tibshirani, "Sparse principal component analysis," ...
  • R. Jenatton, G. Obozinski, and F. Bach, "Structured Sparse Principal ...
  • R. Jenatton, J.Y. Audibert, and F. Bach, "Structured variable selection ...
  • D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, ...
  • https://www.danielsoper.com/statcalc/calculator.aspx?id=۴ ...
  • [۳۰]http://onlinestatbook.com/۲/calculators/normal_dist.html ...
  • نمایش کامل مراجع