A robust least squares fuzzy regression model based on kernel function
محل انتشار: مجله سیستم های فازی، دوره: 17، شماره: 4
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 259
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-17-4_009
تاریخ نمایه سازی: 30 خرداد 1400
چکیده مقاله:
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance topresent the robust fuzzy model in the presence of different typesof outliers. Using some simulated data sets and some real datasets, the application of the proposed approach in modeling somecharacteristics with outliers, is studied.
کلیدواژه ها:
نویسندگان
A. H. Khammar
Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran
M. Arefi
Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran
M. G. Akbari
Department of Statistics, Faculty of Mathematical Sciences and Statistics, University of Birjand, Birjand, Iran