A Distributed Sailfish Optimizer Based on Multi-Agent Systems for Solving Non-Convex and Scalable Optimization Problems Implemented on GPU

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 279

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-9-1_007

تاریخ نمایه سازی: 21 اردیبهشت 1400

چکیده مقاله:

The SailFish Optimizer (SFO) is a metaheuristic algorithm inspired by a group of hunting sailfish that alternates their attacks on group of prey. The SFO algorithm takes advantage of using a simple method for providing the dynamic balance between exploration and exploitation phases, creating the swarm diversity, avoiding local optima, and guaranteeing high convergence speed. Nowadays, multi agent systems and metaheuristic algorithms can provide high performance solutions for solving combinatorial optimization problems. These methods provide a prominent approach to reduce the execution time and improve of the solution quality. In this paper, we elaborate a multi agent based and distributed method for sailfish optimizer (DSFO), which improves the execution time and speedup of the algorithm while maintaining the results of optimization in high quality. The Graphics Processing Units (GPUs) using Compute Unified Device Architecture (CUDA) are used for the massive computation requirements in this approach. In depth of the study, we present the implementation details and performance observations of DSFO algorithm. Also, a comparative study of distributed and sequential SFO is performed on a set of standard benchmark optimization functions. Moreover, the execution time of distributed SFO is compared with other parallel algorithms to show the speed of the proposed algorithm for solving unconstrained optimization problems. The final results indicate that the proposed method is executed about maximum ۱۴ times faster than other parallel algorithms and shows the ability of DSFO for solving non-separable, non-convex and scalable optimization problems.

نویسندگان

S. Shadravan

Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran

H. Naji

Department of Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran.

V. Khatibi

Department of Computer Engineering, Kerman Branch, Islamic Azad University, Bardsir, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Blum et al., "Hybrid metaheuristics in combinatorial optimization: A ...
  • I. Boussaid et al., "A survey on optimization metaheuristics" Information ...
  • M.B. Ayhan et al., "A multi-agent based approach for change ...
  • M.A. Hale and J. Craig, "Preliminary development of agent technologies ...
  • N. Jennings and M. Wooldridge, "Intelligent Agents: Theory and Practice" ...
  • J. M Vidal et al., "Inside an Agent"IEEE Internet Computing, ...
  • S. Shadravan et al., "The Sailfish Optimizer: A novel nature-inspired ...
  • M. E. Aydin, "Meta-heuristic agent teams for job shop scheduling ...
  • M. Hammami and K. Ghediera, "COSATS, X-COSATS: Two multi-agent systems ...
  • S. Talukdar et al., "Asynchronous teams: Cooperation schemes for autonomous ...
  • S. Talukdar, S. Murthy and R. Akkiraju "Asynchronous teams. In ...
  • Maria Amélia Lopes Silva et al. "A Multiagent Metaheuristic Optimization ...
  • H. R. Naji, M. Sohrabi, and E. Rashedi, "A High ...
  • H. R. Naji, "Solving Large Computational Problems using Multi-Agents Implemented ...
  • H.R. Naji and B.E. Wells, " On incorporating multi-agents in ...
  • G. Binetti et al., "Distributed consensus-based economic dispatch with transmission ...
  • Z. Qiu, S. Liu and L. Xie, " Distributed constrained ...
  • R. Carli et al., "Analysis of newton-raphson consensus for multi-agent ...
  • H. Zhang et al., "Adaptive consensus-based distributed target tracking with ...
  • R. Yarinezhad and A, Sarabi, "A New Routing Algorithm for ...
  • Sh. Lotfi and F. Karimi, "A Hybrid MOEA/D-TS for Solving ...
  • M. Essaid et al., " GPU parallelization strategies for metaheuristics: ...
  • P. Krömer, J. Platoš and V. Snášel. "Nature-inspired meta-heuristics on ...
  • E. Alba, G. Luque and S. Nesmachnow, " Parallel metaheuristics: ...
  • Z. Yang, Y. Zhu and Y. Pu, " Parallel image ...
  • W. Fang et al., "Parallel data mining on graphics processors" ...
  • Z.W. Luo et al., "Artificial Neural Network Computation on Graphic ...
  • R.A. Patel et al., "Parallel lossless data compression on the ...
  • A. Brodtkorb et al., "State-of-the-art in heterogeneous computing" Sci. Program, ...
  • NVIDIA, NVIDIA CUDA Programming version 6.0, 2014 ...
  • DB. Kirk, WH. Wen-Mei, "Programming massively parallel processors: a hands-on ...
  • NVIDIA: CURAND Library 7.5., 2015. http://docs.nvidia.com/cuda/pdf/CURAND Library.pdf ...
  • A. Zarrabi et al., "Gravitational search algorithm using CUDA: a ...
  • R.V. Krishna and S.S. Reddy, "Performance Evaluation of Particle Swarm ...
  • A.K. Qin et al., "An Improved CUDA-Based Implementation of Differential ...
  • نمایش کامل مراجع