A note on some lower bounds of the Laplacian energy of a graph
محل انتشار: فصلنامه معادلات در ترکیبات، دوره: 8، شماره: 2
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 237
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COMB-8-2_002
تاریخ نمایه سازی: 14 اردیبهشت 1400
چکیده مقاله:
For a simple connected graph $G$ of order $n$ and size $m$, the Laplacian energy of $G$ is defined as $LE(G)=\sum_{i=۱}^n|\mu_i-\frac{۲m}{n}|$ where $\mu_۱, \mu_۲,\ldots,\mu_{n-۱}, \mu_{n}$ are the Laplacian eigenvalues of $G$ satisfying $\mu_۱\ge \mu_۲\ge\cdots \ge \mu_{n-۱}> \mu_{n}=۰$. In this note, some new lower bounds on the graph invariant $LE(G)$ are derived. The obtained results are compared with some already known lower bounds of $LE(G)$.
کلیدواژه ها:
نویسندگان
Igor Milovanovic
Faculty of Electronic Engineering
M. Matejic
University of Nis, Serbia
P. Milosevic
University of Nis, Serbia
Emina Milovanovic
Faculty of Electronic Engineering
Akbar Ali
University of Management and Technology, Sialkot, Pakistan