m-TOPOLOGY ON THE RING OF REAL-MEASURABLE FUNCTIONS

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 384

فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAS-9-1_008

تاریخ نمایه سازی: 13 اردیبهشت 1400

چکیده مقاله:

In this article we consider the $m$-topology on \linebreak $M(X,\mathscr{A})$, the ring of all real measurable functions on a measurable space $(X, \mathscr{A})$, and we denote it by $M_m(X,\mathscr{A})$. We show that $M_m(X,\mathscr{A})$ is a Hausdorff regular topological ring, moreover we prove that if $(X, \mathscr{A})$ is a $T$-measurable space and $X$ is a finite set with $|X|=n$, then $M_m(X,\mathscr{A})‎\cong‎ \mathbb R^n$ as topological rings. Also, we show that $M_m(X,\mathscr{A})$ is never a pseudocompact space and it is also never a countably compact space. We prove that $(X,\mathscr{A})$ is a pseudocompact measurable space, if and only if $ {M}_{m}(X,\mathscr{A})= {M}_{u}(X,\mathscr{A})$, if and only if $ M_m(X,\mathscr{A}) $ is a first countable topological space, if and only if $M_m(X,\mathscr{A})$ is a connected space, if and only if $M_m(X,\mathscr{A})$ is a locally connected space, if and only if $M^*(X,\mathscr{A})$ is a connected subset of $M_m(X,\mathscr{A})$.

کلیدواژه ها:

نویسندگان

H. Yousefpour

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

A. A. Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

A. Mahmoudi Darghadam

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Gh. Sadeghi

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Amini, B. Amini, A. Momtahan, and M. H. Shirdareh ...
  • H. Azadi, M. Henriksen, and E. Momtahan, Some properties of ...
  • F. Azarpanah, F. Manshoor, and R. Mohamadian, Connectedness and compactness in ...
  • F. Azarpanah, F. Manshoor, and R. Mohamadian, A generalization of ...
  • F. Azarpanah, M. Paimann, and A.R. Salehi, Connectedness of some ...
  • F. Azarpanah, M. Paimann and A.R. Salehi, Compactness, connectedness and countability ...
  • A. A. Estaji and A. Mahmoudi Darghadam, Rings of real ...
  • A. A. Estaji and A. Mahmoudi Darghadam, Some properties of ...
  • A. A. Estaji, A. Mahmoudi Darghadam, and H. Yousefpour, Maximal ...
  • L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976 ...
  • J. Gómez-Pérez and W. W. McGovern, The m-topology on Cm(X) ...
  • A. Hager, Algebras of measurable functions, Duke Math. J., 38 ...
  • E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. ...
  • W. Iberkleid, R. Lafuente-Rodriguez and W. W. McGovern, The regular ...
  • G. Di Maio, L. Holá, D. Holý, and R. A. ...
  • F. Manshoor, Another generalization of the m-topology, Int. Math. Forum, 9(14) ...
  • E. Momtahan, Essential ideals in rings of measurable functions, Comm. ...
  • W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Inc., New York, 1976 ...
  • W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New ...
  • E. van Douwen, Nonnormality or hereditary paracompactness of some spacesof ...
  • R. Viertl, A note on maximal ideals and residue class ...
  • S. Warner, Topological Rings, North-Holland Math. Stud. 178, P.0. Box 211,1000 ...
  • S. Willard, General Topology, Addison-Wesley Pub. Co., 1970 ...
  • نمایش کامل مراجع