Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 317
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACR-11-1_005
تاریخ نمایه سازی: 13 اردیبهشت 1400
چکیده مقاله:
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep architecture with domain-general and domain-specific representations across domains for deep unsupervised domain adaptation. Also, we apply low-rank representation learning to reduce source and target domains discrepancy. The low-rank constraint can uncover more related information between domains and it can transfer more relevant knowledge from the source domain to the target domain. The DALRRL guarantees to minimize marginal and conditional distributions difference between the source and target domains. The experimental results conducted on two benchmark domain adaptation datasets demonstrate the effectiveness of our method in image classification tasks.
کلیدواژه ها:
نویسندگان
Yeganeh Madadi
Department of Computer Engineering, Faculty of Technical and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Vahid Seydi
Department of Computer Engineering, Faculty of Technical and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Reshad Hosseini
School of ECE, College of Engineering, University of Tehran, Tehran, Iran