A comprehensive review on meta-heuristic algorithms and their classification with novel approach
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 410
فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-8-1_006
تاریخ نمایه سازی: 1 اردیبهشت 1400
چکیده مقاله:
Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems. In recent years, the application of meta-heuristic algorithms for such problems increased dramatically and it is widely used in various fields. These algorithms, in contrast to exact optimization methods, find the solutions which are very close to the global optimum solution as possible, in such a way that this solution satisfies the threshold constraint with an acceptable level. Most of the meta-heuristic algorithms are inspired by natural phenomena. In this research, a comprehensive review on meta-heuristic algorithms is presented to introduce a large number of them (i.e. about 110 algorithms). Moreover, this research provides a brief explanation along with the source of their inspiration for each algorithm. Also, these algorithms are categorized based on the type of algorithms (e.g. swarm-based, evolutionary, physics-based, and human-based), nature-inspired vs non-nature-inspired based, population-based vs single-solution based. Finally, we present a novel classification of meta-heuristic algorithms based on the country of origin.
کلیدواژه ها:
meta-heuristic algorithms ، Meta-heuristic Optimization ، Classification of Meta-Heuristic Algorithms ، evolutionary algorithms ، Swarm Algorithms
نویسندگان
Hojatollah Rajabi Moshtaghi
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Abbas Toloie Eshlaghy
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Mohammad Reza Motadel
Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :