A comprehensive review on meta-heuristic algorithms and their classification with novel approach

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 410

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_APRIE-8-1_006

تاریخ نمایه سازی: 1 اردیبهشت 1400

چکیده مقاله:

Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems. In recent years, the application of meta-heuristic algorithms for such problems increased dramatically and it is widely used in various fields. These algorithms, in contrast to exact optimization methods, find the solutions which are very close to the global optimum solution as possible, in such a way that this solution satisfies the threshold constraint with an acceptable level. Most of the meta-heuristic algorithms are inspired by natural phenomena. In this research, a comprehensive review on meta-heuristic algorithms is presented to introduce a large number of them (i.e. about 110 algorithms). Moreover, this research provides a brief explanation along with the source of their inspiration for each algorithm. Also, these algorithms are categorized based on the type of algorithms (e.g. swarm-based, evolutionary, physics-based, and human-based), nature-inspired vs non-nature-inspired based, population-based vs single-solution based. Finally, we present a novel classification of meta-heuristic algorithms based on the country of origin.

کلیدواژه ها:

نویسندگان

Hojatollah Rajabi Moshtaghi

Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abbas Toloie Eshlaghy

Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Mohammad Reza Motadel

Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • [1]         Safavi, S. A. A., Pour Jafarian, N., & Safavi, ...
  • [2]         Alam Tabriz, A., Zandieh, M., & Mohammad Rahimi, A. ...
  • [3]         Weise, T. (2009). Global optimization algorithms-theory and application. Self-published ...
  • [4]         Beheshti, Z., & Shamsuddin, S. M. H. (2013). A ...
  • [5]         Mohammad Pour Zarandi, M. E. (2013). Nonlinear optimization. Tehran ...
  • [6]         Toroslu, I. H., & Cosar, A. (2004). Dynamic programming ...
  • [7]         Balev, S., Yanev, N., Fréville, A., & Andonov, R. ...
  • [8]         Martí, R., Gallego, M., & Duarte, A. (2010). A ...
  • [9]         Tavakoli Moghaddam, R., Norouzi, N., Kalami, S. M., & ...
  • [10]      Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). ...
  • [11]      Laporte, G., & Osman, I. H. (1995). Routing problems: ...
  • [12]      Voss, S., Martello, S., Osman, I. H., & Roucairol, ...
  • [13]      Badrloo, S., & Husseinzadeh Kashan, A. (2019). Combinatorial optimization ...
  • [14]      Kanagasabai, L. (2020). Factual power loss reduction by augmented ...
  • [15]      Shahabi, F., Pourahangarian, F., & Beheshti, H. (2019). A ...
  • [16]      Ghahramani Nahr, J. (2019). Improve the efficiency and effectiveness ...
  • [17]      Sharifzadeh, H., & Amjady, N. (2014). a Review of ...
  • [18]      Fogel, D. B., & Fogel, L. J. (1995, September). ...
  • [19]    Holland, J. (1975). Adaptation in natural and artificial systems: ...
  • [20]      Glover, F. (1977). Heuristics for integer programming using surrogate ...
  • [21]      Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. ...
  • [22]      Glover, F. (1986). Future paths for integer programming and ...
  • [23]      Reynolds, R. G. (1994, February). An introduction to cultural ...
  • [24]      Kennedy, J., & Eberhart, R. (1995, November). Particle swarm ...
  • [25]      Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant ...
  • [26]      Storn, R., & Price, K. (1997). Differential evolution–a simple ...
  • [27]      Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers ...
  • [28]      Kim, H., & Ahn, B. (2001, August). A new ...
  • [29]      Geem, Z. W., Kim, J. H., & Loganathan, G. ...
  • [30]      Passino, K. M. (2002). Biomimicry of bacterial foraging for ...
  • [31]      Xie, X. F., Zhang, W. J., & Yang, Z. ...
  • [32]      Eusuff, M. M., & Lansey, K. E. (2003). Optimization ...
  • [33]      Birbil, Ş. İ., & Fang, S. C. (2003). An ...
  • [34]      Hsiao, Y. T., Chuang, C. L., Jiang, J. A., ...
  • [35]      Sacco, W. F., & de Oliveira, C. R. (2005). ...
  • [36]      Erol, O. K., & Eksin, I. (2006). A new ...
  • [37]      He, S., Wu, Q. H., & Saunders, J. R. ...
  • [38]      Mehrabian, A. R., & Lucas, C. (2006). A novel ...
  • [39]      Du, H., Wu, X., & Zhuang, J. (2006, September). ...
  • [40]      Chu, S. C., Tsai, P. W., & Pan, J. ...
  • [41]      Karci, A., & Alatas, B. (2006, September). Thinking capability ...
  • [42]      Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive ...
  • [43]      Karaboga, D., & Basturk, B. (2007). A powerful and ...
  • [44]      Formato, R. A. (2007). Central force optimization: a new ...
  • [45]      Chuang, C. L., & Jiang, J. A. (2007, September). ...
  • [46]      Lamberti, L., & Pappalettere, C. (2007). Weight optimization of ...
  • [47]      Rabanal, P., Rodríguez, I., & Rubio, F. (2007, August). ...
  • [48]      Kripka, M., & Kripka, R. M. L. (2008, June). ...
  • [49]      Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), ...
  • [50]      Yang, X. S. (2009, October). Firefly algorithms for multimodal ...
  • [51]      Premaratne, U., Samarabandu, J., & Sidhu, T. (2009, December). ...
  • [52]      Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: ...
  • [53]      Yang, X. S., & Deb, S. (2009, December). Cuckoo ...
  • [54]      Oftadeh, R., & Mahjoob, M. J. (2009, September). A ...
  • [55]      Shah-Hosseini, H. (2009). The intelligent water drops algorithm: a ...
  • [56]      Xie, L., Zeng, J., & Cui, Z. (2009, December). ...
  • [57]      Das, S., Chowdhury, A., & Abraham, A. (2009, May). ...
  • [58]      Zhang, L. M., Dahlmann, C., & Zhang, Y. (2009, ...
  • [59]      Kashan, A. H. (2009, December). League championship algorithm: a ...
  • [60]       Chen, S. (2009, May). Locust Swarms-A new multi-optima search ...
  • [61]      Iordache, S. (2010, July). Consultant-guided search: a new metaheuristic ...
  • [62]      Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In ...
  • [63]      Kaveh, A., & Talatahari, S. (2010). A novel heuristic ...
  • [64]      Lam, A. Y., & Li, V. O. (2009). Chemical-reaction-inspired ...
  • [65]      Yang, X. S., & Deb, S. (2010). Eagle strategy ...
  • [66]      Eita, M. A., & Fahmy, M. M. (2010). Group ...
  • [67]      Xu, Y., Cui, Z., & Zeng, J. (2010, December). ...
  • [68]      Shah-Hosseini, H. (2011, October). Otsu's criterion-based multilevel thresholding by ...
  • [69]      Shah-Hosseini, H. (2011). Principal components analysis by the galaxy-based ...
  • [70]      Tamura, K., & Yasuda, K. (2011). Spiral dynamics inspired ...
  • [71]      Rao, R. V., Savsani, V. J., & Vakharia, D. ...
  • [72]      Shayeghi, H., & Dadashpour, J. (2012). Anarchic society optimization ...
  • [73]      Sakulin, A., & Puangdownreong, D. (2012). A novel meta-heuristic ...
  • [74]      Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. ...
  • [75]      Tang, R., Fong, S., Yang, X. S., & Deb, ...
  • [76]      Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. ...
  • [77]      Yan, G. W., & Hao, Z. J. (2013). A ...
  • [78]      Hatamlou, A. (2013). Black hole: A new heuristic optimization ...
  • [79]      Sur, C., Sharma, S., & Shukla, A. (2013). Egyptian ...
  • [80]      Gheraibia, Y., & Moussaoui, A. (2013, June). Penguins search ...
  • [81]      Neshat, M., Sepidnam, G., & Sargolzaei, M. (2013). Swallow ...
  • [82]      Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). ...
  • [83]      Osaba, E., Diaz, F., & Onieva, E. (2014). Golden ...
  • [84]      Li, X., Zhang, J., & Yin, M. (2014). Animal ...
  • [85]      Moosavian, N., & Roodsari, B. K. (2014). Soccer league ...
  • [86]      Moosavian, N., & Roodsari, B. K. (2013). Soccer league ...
  • [87]      Meng, X., Liu, Y., Gao, X., & Zhang, H. ...
  • [88]      Ghaemi, M., & Feizi-Derakhshi, M. R. (2014). Forest optimization ...
  • [89]      Hatamlou, A. (2014). Heart: a novel optimization algorithm for ...
  • [90]      De Melo, V. V. (2014, July). Kaizen programming. Proceedings ...
  • [91]      Ghorbani, N., & Babaei, E. (2014). Exchange market algorithm. Applied ...
  • [92]      Odili, J. B., Kahar, M. N. M., & Anwar, ...
  • [93]      Wang, G. G., Deb, S., & Coelho, L. D. ...
  • [94]      Javidy, B., Hatamlou, A., & Mirjalili, S. (2015). Ions ...
  • [95]      Beiranvand, H., & Rokrok, E. (2015). General relativity search ...
  • [96]      Chen, C. C., Tsai, Y. C., Liu, I. I., ...
  • [97]      Kashan, A. H. (2015). A new metaheuristic for optimization: ...
  • [98]      Merrikh-Bayat, F. (2015). The runner-root algorithm: a metaheuristic for ...
  • [99]      Doğan, B., & Ölmez, T. (2015). A new metaheuristic ...
  • [100]  Salimi, H. (2015). Stochastic fractal search: a powerful metaheuristic ...
  • [101]  Tilahun, S. L., & Ong, H. C. (2015). Prey-predator ...
  • [102]  Zheng, Y. J. (2015). Water wave optimization: a new ...
  • [103]  Findik, O. (2015). Bull optimization algorithm based on genetic ...
  • [104]  Deb, S., Fong, S., & Tian, Z. (2015, October). ...
  • [105]  Mirjalili, S. (2015). The ant lion optimizer. Advances in engineering ...
  • [106]  Yazdani, M., & Jolai, F. (2016). Lion optimization algorithm ...
  • [107]  Mirjalili, S., & Lewis, A. (2016). The whale optimization ...
  • [108]  Topal, A. O., & Altun, O. (2016). A novel ...
  • [109]  Kaveh, A., & Zolghadr, A. (2016). A novel meta-heuristic ...
  • [110]  Liang, Y. C., & Cuevas Juarez, J. R. (2016). ...
  • [111]  Li, M. D., Zhao, H., Weng, X. W., & ...
  • [112]  Askarzadeh, A. (2016). A novel metaheuristic method for solving ...
  • [113]  Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization ...
  • [114]  Ibrahim, M. K., & Ali, R. S. (2016). Novel ...
  • [115]  Kaveh, A., & Bakhshpoori, T. (2016). Water evaporation optimization: ...
  • [116]  Kaveh, A., & Dadras, A. (2017). A novel meta-heuristic ...
  • [117]  Tabari, A., & Ahmad, A. (2017). A new optimization ...
  • [118]  Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper ...
  • [119]  Raouf, O. A., & Hezam, I. M. (2017). Sperm ...
  • [120]  Wang, T., & Yang, L. (2018). Beetle swarm optimization ...
  • [121]  Ismail, F. H., Houssein, E. H., & Hassanien, A. ...
  • [122]  Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: ...
  • [123]  Arora, S., & Anand, P. (2019). Chaotic grasshopper optimization ...
  • [124]  Qiao, W., & Yang, Z. (2019). Solving large-scale function ...
  • [125]  Harifi, S., Khalilian, M., Mohammadzadeh, J., & Ebrahimnejad, S. ...
  • [126]  Dehghani, M., Montazeri, Z., Malik, O. P., Givi, H., ...
  • [127]  Dehghani, M., Montazeri, Z., Givi, H., Guerrero, J. M., ...
  • [128]  Braik, M., Sheta, A., & Al-Hiary, H. (2020). A ...
  • [129]  Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R. (2020). ...
  • [130]  Birattari, M., Paquete, L., Stützle, T., & Varrentrapp, K. ...
  • [131]  Fister Jr, I., Yang, X. S., Fister, I., Brest, ...
  • نمایش کامل مراجع