ELECTRE I-based group decision methodology with risk preferences in an imprecise setting for flexible manufacturing systems
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 347
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOIE-14-2_017
تاریخ نمایه سازی: 17 فروردین 1400
چکیده مقاله:
A new hesitant fuzzy set (HFS)-ELECTRE for multi-criteria group decision-making (MCGDM) problems is developed in this paper. In real-world applications, the decision makers (DMs)’ opinions are often hesitant for decision problems; thus, considering the exact data is difficult. To address the issue, the DMs’ judgments can be expressed as linguistic variables that are converted into the HFSs, considered as inputs in the ELECTRE method. Meanwhile, an appropriate tool among the fuzzy sets theory and their extensions is the HFSs since the DMs can assign their judgments for an alternative under the evaluation criteria by some membership degrees under a set to decrease the errors. Introduced hesitant fuzzy ELECTRE (HF-ELECTRE) method is elaborated based on the risk preference of each DM with assigning some degrees. Moreover, the weight of each DM is computed and implemented in the proposed procedure to reduce judgments’ errors. Then, a new discordance HF index is provided. Pair-wise comparisons are used for outranking relations regarding HF information. Finally, the validation and verification of the proposed HF-ELECTRE method are demonstrated in a practical example of FMSs.
کلیدواژه ها:
نویسندگان
Seyed Meysam Mousavi
Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
Hosein Gitinavard
Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
Behnam Vahdani
Department of Industrial Engineering and Mechanical Engineering, Islamic Azad University-Qazvin branch, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :