پیشبینی جریان با استفاده از مدل ماشین بردار پشتیبان بر مبنای سری های زمانی دبی و بارش در ایستگاههای بالادست (مطالعه موردی : ایستگاه هیدرومتری تله زنگ)
محل انتشار: فصلنامه مدل سازی در مهندسی، دوره: 16، شماره: 54
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 284
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JME-16-54_007
تاریخ نمایه سازی: 21 اسفند 1399
چکیده مقاله:
در این پژوهش به منظور پیشبینی دبی ماهانه ایستگاه هیدرومتری تله زنگ از مدل ماشین بردار پشتیبان (svm) و آمار 10 ایستگاه هیدرومتری و 8 ایستگاه بارانسنجی بالادست آن در طول یک دوره آماری 20 ساله (1371-1390) استفاده شد. لذا در اولین گام تاثیر استفاده از سریهای زمانی دبی، بارش و ترکیبی از این دو پارامتر به عنوان ورودی و در گام بعد تاثیر تعداد ایستگاههای هیدرومتری و بارانسنجی بالادست بر نتایج پیشبینی، مورد بررسی قرار گرفت. مقایسه نتایج به کمک سه شاخص آماری ضریب همبستگی (R2)، جذر میانگین مربعات خطا (RMSE) و خطای استاندارد (SE) صورت گرفت و نتایج نشان داد که استفاده از آمار بارندگی در کنار دبی، به عنوان ورودی مدل، با ضریب همبستگی 884/. جذر میانگین مربعات خطا 41/38 و خطای استاندارد 28/0 نسبت به استفاده از آمار دبی، به عنوان ورودی مدل، با ضریب همبستگی 871/. جذر میانگین مربعات خطا 20/40 و خطای استاندارد 29/0 دقت پیشبینی را بالا برده و استفاده از سری زمانی بارندگی به تنهایی، با ضریب همبستگی 225/. جذر میانگین مربعات خطا 73/157 و خطای استاندارد 62/0 به شدت باعث افزایش خطا در نتایج خواهد شد. همچنین با افزایش تعداد ایستگاههای هیدرومتری و بارانسنجی در بالادست مدل قادر خواهد بود دبی را با دقت بیشتری پیشبینی نماید.
کلیدواژه ها:
نویسندگان
حامد نوذری
گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، ایران
فاطمه توکلی
گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :