سال انتشار: 1399
محل انتشار: فصلنامه فرماندهی و کنترل، دوره: 4، شماره: 1
کد COI مقاله: JR_ICI-4-1_003
زبان مقاله: فارسیمشاهد این مقاله: 10
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 14 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:
مشخصات نویسندگان مقاله تشخیص شایعات در شبکه های اجتماعی با استفاده از معماری ترکیبی LSTM - CNN و ارائه ی روش جدید پیش پردازش داده ها
چکیده مقاله:
با توجه به جایگاهی که امروزه شبکه های اجتماعی در جوامع پیدا کرده اند، افراد بسیاری از این شبکه ها به منظور منتشر کردن عقاید و اطلاعات خود استفاده می کنند. یکی از چالش های امنیتی موجود در این شبکه ها، جلوگیری از حملات معنایی است. در حملات معنایی فرد مخرب قصد دارد تا با انتشار اطلاعات و شایعات نادرست در شبکه های اجتماعی، بر روی کاربران دیگر تاثیر بگذارد. بنابراین ایمنی افراد در این گونه شبکه ها به خطر می افتد. انتشار اطلاعات نادرست در مواقع بحرانی مانند جنگ یا انتخابات ممکن است، عواقب جبران ناپذیری برای یک اجتماع داشته باشد. از این رو در این پژوهش هدف اینست که بتوان شایعات از جمله شایعات فارسی را در شبکه های اجتماعی تشخیص داد. بدین منظور از یک معماری ترکیبی LSTM-CNN استفاده و برخلاف پژوهش های پیشین از نرخ یادگیری چرخشی بهره گرفته و روش جدیدی به منظورپردازش کردن داده ها قبل از ورود به شبکه برای بهبود نتایج ارائه شدهاست. علاوه بر آن نیز برای رفع مشکلات مربوط به کمبود داده مدل BERT برای تشخیص شایعات فارسی هم مورد بررسی قرار گرفت. در نهایت با ارزیابی روش پیشنهادی مشخص شد که این روش به دقت مناسبی برای تشخیص شایعات و همین طور شایعات فارسی تنها با بررسی محتوا، دست یافته است.
کلیدواژه ها:
Deep learning, Preprocessing, Rumor detection, Social network, شبکه های اجتماعی, شایعه, یادگیری عمیق
کد مقاله/لینک ثابت به این مقاله
برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:https://civilica.com/doc/1155177/
نحوه استناد به مقاله:
در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:خسروی، مریم و شیرازی، حسین و داداش تبار، کوروش و هاشمی گلپایگانی، سید علیرضا،1399،تشخیص شایعات در شبکه های اجتماعی با استفاده از معماری ترکیبی LSTM - CNN و ارائه ی روش جدید پیش پردازش داده ها،،،،،https://civilica.com/doc/1155177
در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1399، خسروی، مریم؛ حسین شیرازی و کوروش داداش تبار و سید علیرضا هاشمی گلپایگانی)
برای بار دوم به بعد: (1399، خسروی؛ شیرازی و داداش تبار و هاشمی گلپایگانی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.
مدیریت اطلاعات پژوهشی
اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.
علم سنجی و رتبه بندی مقاله
مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.
به اشتراک گذاری این صفحه
اطلاعات بیشتر درباره COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.