Evaluation of Dose Distribution in Lung Tumor Radiotherapy with Boron Neutron Capture Therapy

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 408

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-18-1_008

تاریخ نمایه سازی: 19 دی 1399

چکیده مقاله:

Introduction: It is well known that neutrons are more effective treatments than photons to treat hypoxic tumors due to the interaction with the nucleus and the production of heavy particles. This study aimed to evaluate the suitability of Boron neutron capture therapy (BNCT) for the treatment of lung cancer. To this end, neutron dose distributions were calculated in lung tumor volume and peripheral organs at risk (OARs). Material and Methods: Dose distribution to treat lung cancer was calculated by MCNPX code.  An elliptical tumor with a volume of 27cm3 was centered in the left lung of the ORNL phantom and was irradiated with neutron spectrums of Massachusetts Institute of Technology (MIT) and CNEA-MEC. The tumor was loaded with different concentrations of Boron 0, 10, 30, and 60 ppm to evaluate the delivered dose to OARs. Results: Neutron absorbed dose rates in the tumor were 2.2×10-3, 2.6×10-3, 3.4×10-3, and 4.7×10-3 Gy/s for boron concentrations of 0, 10, 30, and 60 ppm, respectively for MIT. Moreover, similar results for CNEA-MEC were 1.2×10-3, 1.6×10-3, 2.5×10-3, and 3.7×10-3 Gy/s. The heart absorbed the maximum neutron dose rate of 1.7×10-4 and 1.6×10-4 Gy/s in MIT and CNEA, respectively. For all energy bins of spectrums, the neutrons flux is decreased as it penetrates the lung. Conclusion: An increase in boron concentrations in tumors increases the absorbed doses while deteriorates dose uniformity. The results show that the MIT source is well suited to treat deep lung tumors while maintaining the OARs’ dose within the threshold dose.

کلیدواژه ها:

Boron neutron capture therapy (BNCT) ، Organs at risk (OARs) ، Lung cancer ، Monte Carlo Simulation

نویسندگان

Mansour Zabihzadeh

Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Department of Radiotherapy and Radiation Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,

Farnaz Rahimli

Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Mohammad Ali Behrooz

Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Amir Danyaei

Ahvaz Jundishapur University of Medical Sciences

Hodjatollah Shahbazian

Department of Clinical Oncology, Faculty of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • American Cancer Society. Key Statistics for Lung Cancer. 2019. availible ...
  • Bortolussi S, Altieri S. Thermal neutron irradiation field design for ...
  • Khan FM, Gibbons JP. Khan's the physics of radiation therapy: ...
  • Grimes DR, Partridge M. A mechanistic investigation of the oxygen ...
  • Hall EJ, Giaccia AJ. Radiobiology for the Radiologist: Lippincott Williams ...
  • Mirzaei D, Miri-Hakimabad H, Rafat-Motavalli L. Depth dose evaluation for ...
  • Yu H, Tang X, Shu D, Liu Y, Geng C, ...
  • Capoulat M, Kreiner A. A 13 C (d, n)-based epithermal ...
  • Farías RO, Bortolussi S, Menéndez PR, González SJ. Exploring Boron ...
  • Zolfaghari M, Sedaghatizadeh M. Design and simulation of photoneutron source ...
  • Riley K, Binns P, Harling O, Albritton J, Kiger W, ...
  • Azahra M, Kamili A, Boukhal H. Monte Carlo calculation for ...
  • Krstic D, Markovic V, Jovanovic Z, Milenkovic B, Nikezic D, ...
  • Rahmani F, Shahriari M. Beam shaping assembly optimization of Linac ...
  • Moss RL. Critical review, with an optimistic outlook, on Boron ...
  • Sweet W, Soloway A, Brownell G. Boron-slow neutron capture therapy ...
  • Suzuki M, Suzuki O, Sakurai Y, Tanaka H, Kondo N, ...
  • Barth RF, Vicente MG, Harling OK, Kiger WS, Riley KJ, ...
  • Farr LE, Sweet WH, Robertson JS, Foster CG, Locksley HB, ...
  • Hatanaka H, Nakagawa Y. Clinical results of long-surviving brain tumor ...
  • Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, ...
  • Busse PM, Harling OK, Palmer MR, Kiger W, Kaplan J, ...
  • Matsumoto T. Monte Carlo simulation of depth–dose distribution in several ...
  • Koivunoro H, Bleuel D, Nastasi U, Lou T, Reijonen J, ...
  • Yanagie H, Sakurai Y, Ogura K, Kobayashi T, Furuya Y, ...
  • Gupta N, Gahbauer RA, Blue TE, Albertson B. Common challenges ...
  • Zonta A, Prati U, Roveda L, Ferrari C, Zonta S, ...
  • Moss RL. Critical review, with an optimistic outlook, on Boron ...
  • AAPM. Neutron Measurements Around High Energy X-ray Radiotherapy Machines. AAPM ...
  • Naseri A, Mesbahi A. A review on photoneutrons characteristics in ...
  • Pelowitz DB. MCNPXTM user’s manual. Los Alamos National Laboratory, Los ...
  • Cristy M, Eckerman K. Specific absorbed fractions of energy at ...
  • Suryanto A, Herlambang K, Rachmatullah P. Comparison of tumor density ...
  • ICRU. ICRU Report No. 44, Tissue substitutes in radiation dosimetry ...
  • Kiger III W, Sakamoto S, Harling O. Neutronic design of ...
  • Capoulat M, Minsky D, Kreiner A. Computational assessment of deep-seated ...
  • ICRP. The 2007 Recommendations of the International Commission on Radiological ...
  • Rasouli FS, Masoudi SF. Simulation of the BNCT of brain ...
  • Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, ...
  • نمایش کامل مراجع