Repeated Record Ordering for Constrained Size Clustering
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 33، شماره: 7
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 432
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-33-7_013
تاریخ نمایه سازی: 4 شهریور 1399
چکیده مقاله:
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggregation technique, the algorithm divides the dataset into groups containing at least members, where is a user-defined parameter. The main application of microaggregation is in Statistical Disclosure Control (SDC) for privacy preserving data publishing. A microaggregation algorithm is qualified based on the sum of within-group squared error, . Unfortunately, it has been proven that the optimal microaggregation problem is NP-Hard in general, but the special univariate case can be solved optimally in polynomial time. Many heuristics exist for the general case of the problem that are founded on the univariate case. These techniques order multivariate records in a sequence. This paper proposes a novel method for record ordering. Starting from a conventional clustering algorithm, the proposed method repeatedly puts multivariate records into a sequence and then clusters them again. The process is repeated until no improvement is achieved. Extensive experiments have been conducted in this research to confirm the effectiveness of the proposed method for different parameters and datasets.
کلیدواژه ها:
نویسندگان
R. Mortazavi
School of Engineering, Damghan University, Damghan, Iran