A Novel Analytical Framework Combining the Concepts of Credibility and Aspect based Opinion Mining
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 2، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 467
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-2-1_004
تاریخ نمایه سازی: 21 اردیبهشت 1399
چکیده مقاله:
With the emergence of Web 2.0, user generated content in the form of online product reviews has proliferated. Although product reviews contain valuable information, they vary greatly in terms of quality and credibility. This study presents an opinion mining framework - Cred-OPMiner (Credibility-Specific-Opinion Miner) - by combining the concepts of credibility and aspect based opinion mining. Cred-OPMiner performs three main tasks. The first task is to group reviewers based on the credibility dimensions. The second critical task is aspect extraction in which aspects of a given product are identified using a novel hybrid and domain independent algorithm. The final task is the sentiment prediction task where the sentiment on each aspect is computed. The key novelty is utilizing source credibility concepts for online reviewer clustering. Source credibility dimensions including trustworthiness and expertise are quantified using reviewers’ data. In addition, a new aspect extraction technique is developed and incorporated in the Cred-OPMiner. Cred-OPMiner was tested using data crawled from epinions.com. It groups reviewers and then performs aspect based opinion mining by differentiating among opinions of various reviewer groups.
کلیدواژه ها:
نویسندگان
Hossein Abbasimehr
Faculty of Information technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
MohammadJafar Tarokh
IT Group, Industrial Engineering Faculty, KNTU University of Technology