Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 485

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JOIE-12-2_011

تاریخ نمایه سازی: 21 خرداد 1398

چکیده مقاله:

Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fixed interval preventive maintenance (PM) and budget constraint are considered.PM activity is a crucial task to reduce the production efficiency. In the current research we focused on a scheduling problem which a job is processed at the upstream stage and all the downstream machines get busy or alternatively PM cost is significant, consequently the job waits inside the buffers and increases the associated holding cost. This paper proposes a new more realistic mathematical model which considers both the PM and holding cost of jobs inside the buffers in the stochastic flexible flow shop scheduling problem. The holding cost is controlled in the model via the budget constraint. In order to solve the proposedmodel, three hybrid metaheuristic algorithms are introduced. They include a couple of well-known metaheuristic algorithms which have efficient quality solutions in the literature. The two algorithms of them constructed byincorporationof the particle swarm optimization algorithm (PSO) and parallel simulated annealing (PSA) methods under different random generation policies. The third one enriched based on genetic algorithm (GA) with PSA. To evaluate the performance of the proposed algorithms, different numerical examples are presented. Computational experiments revealed that the proposed algorithms embedboth desirable accuracy and CPU time. Among them, the PSO-PSAП outperforms than other algorithms in terms of makespan and CPU time especially for large size problems.

نویسندگان

Sadigh Raissi

School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Ramtin Rooeinfar

School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Vahid Reza Ghezavati

School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Akrami, B., Karimi, B., Hosseini, S.M.M., (2006). Two metaheuristic methods ...
  • Al-Hinai, N., ElMekkawy, T.Y., (2011). Robust and stable flexible job ...
  • Almeder, C., Hartl, R.F., (2013). A metaheuristic optimization approach for ...
  • Arnaout, J.P., (2014). Rescheduling of parallel machines with stochastic processing ...
  • Brucker, P., Kramer, B., (1995). Shop scheduling problems with multiprocessor ...
  • Choi, S.H., Wang, K., (2012). Flexible flow shop scheduling with ...
  • Fahmy, S.A., Sherif, A., Balakrishnan, S., ElMekkawy, T.Y., (2009). A ...
  • González-Neira, E.M., García-Cáceres, R.G., Cabellero-Villalobos, J.P., Molina-Sánchez, L.P., Montoya-Torres, J.R., ...
  • Gupta J.N.D., (1988). Two stage hybrid flow shop scheduling problem. ...
  • Hoogeveen, J.A., Lenstra, J.K., Veltman, B., (1996). Minimizing the makespan ...
  • Kennedy, J., Eberhart,R.C.,(1995). Particle swarm optimization.Proceeding of IEEE International Conference ...
  • Kianfar, K., Fatemi Ghomi, S.M.T., Oroojlooy Jadid, A., (2012). Study ...
  • Koulamas, C., Kyparisis, G.J., (2000). Scheduling on uniform parallel machines ...
  • Li, J.Q., Pan, Q.K., (2015). Solving the large-scale hybrid flow ...
  • Lin, SW., Ying, K.C., (2013). Minimizing makespan in a blocking ...
  • Lin, J.T., Chen,  C.M., (2015). Simulation optimization approach for hybrid ...
  • Montgomery, D.C. (2005). Design and analysis of experiments. Arizona, John ...
  • Norman, B.A., Bean, J.C., (1999). A genetic algorithm methodology for ...
  • Osman, I.H., Kelly, J.P., (1996). Metaheuristics: an overview. Metaheuristics: theory ...
  • Pinedo, M., Chao, X., (1999). Operations scheduling with applications inmanufacturing ...
  • Pinedo, M., (2002). Scheduling theory, algorithms, and systems. Englewood Cliffs, ...
  • Poli, R., Kennedy, G., Blackwell, T., (2007). Particle swarm optimization: ...
  • Rabiee, M., Sadeghi Rad, R., Mazinani, M., Shafaei, R., (2014). ...
  • Rahmani, D., Heydari, M., (2014). Robust and stable flow shop ...
  • Rahmani, D., Ramezanian, R., (2016). A stable reactive approach in ...
  • Sangsawang, C., Sethanan, K., Fujimoto, T., Gen, M., (2015). Metaheuristics ...
  • Singh, M.R., Mahapatra, S.S., (2012). A swarm optimization approach for ...
  • Sukkerd, W., Wuttipornpun, T., (2016). Hybrid genetic algorithm and tabu ...
  • Tang, D., Dai, M., Salido, M.A, Giret, A., (2016). Energy-efficient ...
  • Tran, T.H., Ng, K.M. (2011). A water flow algorithm for ...
  • Villemeur, A., (1991). Reliability, availability, maintainability and safety assessment. USA: ...
  • Wang, X., Tang, L., (2009). A Tabu search heuristic for ...
  • Wang, K., Choi, S.H., (2014). A holonic approach to flexible ...
  • Wardono, B., Fathi, Y., (2004). A Tabu search algorithm for ...
  • Zabihzadeh, S.R., Rezaeian, J., (2015). Two metaheuristic algorithms for flexible ...
  • نمایش کامل مراجع