Full Automatic Micro Calcification Detection in Mammogram Images Using Artificial Neural Network and Gabor Wavelets
محل انتشار: ششمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,699
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP06_092
تاریخ نمایه سازی: 20 فروردین 1390
چکیده مقاله:
Nowadays, automatic defect detection in Breast images which obtains from mommogram is very important in many diagnostic and therapeutic applications. This paper introduces a Novel automatic breast abnormality detection method that uses mammogram images to determine any abnormality in breast tissues. Here, has been tried to give clear description from breast tissues using Gabor wavelets, Geometric Moment Invariants(GMIs), energy, entropy, contrast and some other statistic features such as mean, median, variance, correlation, values of maximum and minimum intensity .It is used from a feature selection method to reduce the feature space too. This method uses from neural network to do this classification. The purpose of this project is to classify the breast tissues to normal and abnormal classes automatically, that saves the radiologist time, increases accuracy and yield of diagnosis.
کلیدواژه ها:
نویسندگان
AmirEhsan Lashkari
School of Electrical and Computer Engineering, University of Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :