ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Using Heavy-Tailed Levy Model in Nonsubsam pled Shearlet Transform Domain for Ultrasound Image Despeckling

تعداد صفحات: 14 | تعداد نمایش خلاصه: 31 | نظرات: 0
سال انتشار: 1396
کد COI مقاله: JR_JACR-8-2_009
زبان مقاله: انگلیسی
(فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.

با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید.در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.

لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.

برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 14 صفحه است در اختیار داشته باشید.

قیمت این مقاله : 7,000 تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Using Heavy-Tailed Levy Model in Nonsubsam pled Shearlet Transform Domain for Ultrasound Image Despeckling

Saeed Jafari - Dep artment of Electrical and Eleectronic E ngineeri ng, Tehran South Branch, Islamic Aza d University, Tehran, Iran
Sedigheh Ghofrani - Dep artment of Electrical and Eleectronic E ngineeri ng, Tehran South Branch, Islamic Aza d University, Tehran, Iran

چکیده مقاله:

F or any coherent imaging systems including ultrasound, synthhetic aperture radar and optiical laser, the multiplicative speckle noise de grades bo th the spatial and contrast resolution of the image. So, speckle suppression or despecklinng is necessary before processing like image seggmentation, edge d etection, and in ge neral any medical diagnosis. It is quite a min d-numbing task to analyze the corru pted imag es. Amongg many methods th at have beeen proposed to perform this task either in spatial domain or in transformed domain, there exists a class of approaches that use coefficient moddelling in transform domain. The pur pose of the paper i s developiing a novel despeckling methhod in noonsubsampled shearlet tran sform (N SST) based on coefficient modelling. B ayesian maximum a posteriori (MAP ) estimator is used where heavy-tailed Lévy (HTL) disstribution is assumed for estimating the noise-free NSST coefficients. The main contribution of this paper is connsidering HTL for modeling the NSST coefficients for the first time becausee of its low computational complexity. The proposed algorith m maintains a balance bet ween speckle suppre ssion and feature preserva tion. Finally, exp eriments show that the propo sed met hod outperforms others in terms of visual evaluation and assessment par ameters.

کلیدواژه ها:

N etwork Lifetime; Cluustering; W -LEACH; Energy Consumption

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/992634/

کد COI مقاله: JR_JACR-8-2_009

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Jafari, Saeed و Ghofrani, Sedigheh,1396,Using Heavy-Tailed Levy Model in Nonsubsam pled Shearlet Transform Domain for Ultrasound Image Despeckling,,,,,https://civilica.com/doc/992634

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1396, Jafari, Saeed؛ Sedigheh Ghofrani)
برای بار دوم به بعد: (1396, Jafari؛ Ghofrani)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی