Emotional State Recognition Based on Brain and Peripheral Signals Using Multi-Class Optimized FSVM Classifiers
محل انتشار: پنجمین کنفرانس ملی مهندسی برق و مکاترونیک ایران
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 674
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICELE05_205
تاریخ نمایه سازی: 26 بهمن 1398
چکیده مقاله:
Emotions are excellent sources of information in communication, and emotion classification is one of the most sophisticated topics in biomedical signal research. This paper proposes a novel approach based on a fuzzy support vector machine (FSVM) classifier to recognize two of the human’s emotion states (Arousal and Valence), each of which includes positive and negative states, according to Electroencephalography (EEG) signals. The purpose is to attain high accuracy via fuzzification of training data and test data. Data fuzzification not only reduces noise level and data size, but also increases accuracy. In this paper, the KPCA method is used in order to reduce the space dimension due to the greatness of feature space as well as the time consuming nature of SVM training process. In order to obtain the optimal parameters of FSVM core and KPCA parameters - for maximization of the accuracy - for a two-dimensional plan (Valence-Arousal), the Tabu Search Algorithm (TSA) is used. The simulation results demonstrate that the optimized fuzzy classifier improved diagnosis of emotional states by about 3 to 7 percent.
کلیدواژه ها:
emotion classification ، optimization ، fuzzy support vector machine (FSVM) ، KPCA ، Tabu search algorithm (TSA)
نویسندگان
Kamran Mohammad Sharifi
Department of Electrical Engineering Amirkabir University of Technology Tehran, Iran
Ali Raziabadi
Department of Electrical Engineering Amirkabir University of Technology Tehran, Iran
Behzad Farzanegan
Department of Electrical Engineering Amirkabir University of Technology Tehran, Iran
Mohammad Hossein zadeh
Department of Electrical Engineering Amirkabir University of Technology Tehran, Iran
Mohammad Bagher Menhaj
Department of Electrical Engineering Amirkabir University of Technology Tehran, Iran