Determining the Best Input Combination and Size of Data Length for Daily Evapotranspiration Modelling

سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,862

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

PWSWM01_021

تاریخ نمایه سازی: 27 تیر 1389

چکیده مقاله:

Evapotranspiration, is a major part of the hydrologic cycle and plays an important role in water resource development and management, especially in the arid and semi-arid climatic regions such as Iran where water resources are limited. Evapotranspiration can be measured directly by lysimeter, or estimated by the empirical formulas. Using lysimeter is expensive and time consuming; also empirical formulas are unsuitable for all variations of time and place. It is difficult to obtain an accurate formula for ETO estimation that is suitable to encompass all environments, because evapotranspiration is an incidental, nonlinear, complex and unsteady process. Soft computing models are able to handle noisy data from a dynamic and nonlinear system such as evapotranspiration. But, they do not have the ability of pre-processing before model development. In this study, the Gamma Test (GT) technique is applied to find the best input combination and number of sufficient data points for evapotranspiration modelling under arid conditions. It has been found that the minimum required variables to construct a good nonlinear model under arid conditions are the minimum and maximum air temperature and wind speed data.

نویسندگان

Fatemeh Karimaldinia

Department of Agriculture and Biological, Faculty engineering, University Putra Malaysia, Malaysia

Lee Teang Shui

Department of Agriculture and Biological, Faculty engineering, University Putra Malaysia, Malaysia

Mohammadreza Abdollahi

Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Malaysia

Najmeh Khalili

Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Allen, R, Pereira, L, Rae. D., & Smith, M. (1998). ...
  • Nov. 2010, Kerman, Ilran ه4, 1 _ 1 ...
  • این کنفرانس بین‌المللی مدلسازی گیاه، آب، خاکک و هوا مرکین‌المللی ...
  • Jang, J, Sun, G, & Mizutani, E (1997). Neuro-Fuzzy and ...
  • Nov. 2010, Kerman, Ilran ه4, 1 _ 1 ...
  • Agalbjrn, S, Kon ar, N., & Jones, A (1997). A ...
  • Aytek, A (2009). Co-active neurofuzy inference system for evapot ranspiration ...
  • Chuzhanova, N., Jones, A, & Margetts, s (1998). Feature selection ...
  • de Oliveira, A. (1999). sndronization of chaos and applications to ...
  • Durrant, P. (2001). winGamma TM: a non-inear data analyss and ...
  • Jensen, M., Burman, R, & Allen, R (1990). Evapot ranpiration ...
  • Jones, A, Tsui, A, & Oliveira, A. (2002). Neural models ...
  • Kisi, O. (2006). Evapot ranspiration estimation usng feed-forward neural networks ...
  • Kisi, O., & Ozturk, O. (2007). Adaptive neurofuzzy omputing technique ...
  • Koncar, N. (1997). ptimisation methodologies for direct inverse neurontrol: University ...
  • Landeras, G, Ortiz-Barredo, A., & L?pez, J (2008). Comparison of ...
  • Moghaddamnia, A, Gafari Gousheh, M., Piri, J, Amin, S, & ...
  • Remesan, R, Shamim, M., & Han, D. (20 .8). Model ...
  • Tsui, A, Jones, A., & Guedes de Oiveira, A. (20 ...
  • A (1994). Fizy logic neural networks and soft computing. Commun. ...
  • Zanetti, S, Sousa, E, Oliveira, V., Almeida, F., & Bernardo, ...
  • نمایش کامل مراجع