یادگیری متریک بر اساس فاصله χ2 سریع برای دسته بندی داده های هیستوگرامی با دسته بندی کننده KNN

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 532

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TJEE-49-2_016

تاریخ نمایه سازی: 20 آذر 1398

چکیده مقاله:

Data comparison is a fundamental problem in machine learning research. Since, metric learning has various applications in clustering and classification problems, it is attracted much attention in the last decades. In this paper, an appropriate metric learning method is presented to utilize in machine vision problems. Common features in machine vision are often histogram; however, metric learning methods are usually designed based on Mahalanobis distance which is not applicable in histogram features. In this study, a new metric learning method based on modified chi-squared distance (χ2) for histogram data is presented. In histogram data classification, χ2 distance is more accurate than Euclidean one; however, its computational cost is higher than Euclidean distance. In this paper, a χ2 distance approximated formulation where a part of its computations is moved into the feature extraction step in offline phase is proposed. Consequently, computational cost of feature comparison is reduced. Experiments on different datasets show that the proposed metric learning method is more accurate than the existing ones in histogram data classification. Moreover, the approximated χ2 distance increases feature comparison speed about 2.5 times without loss of accuracy.

نویسندگان

H. Sadeghi

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

Abolghasem-A. Raie

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • وحیده منعمی زاده و جواد حمیدزاده، جستجوی k نزدیک ترین ... [مقاله ژورنالی]
  • مهرداد حیدری ارجلو، سید قدرت اله سیف السادات و مرتضی ... [مقاله ژورنالی]
  • نصیبه اسدی پرور ماسوله و اسدالله شاه بهرامی، تخمین خودکار ... [مقاله ژورنالی]
  • B. Kulis, Metric learning: a survey, Foundations and Trends® in ...
  • A. Bellet, A. Habrard and M. Sebban, A survey on ...
  • C. Jin and S. W. Jin, Image distance metric learning ...
  • J. Hu, J. Lu and Y. Tan, Sharable and individual ...
  • H. Yan, Kinship verification using neighborhood repulsed correlation metric learning, ...
  • H. Yan, and J. Hu, Video-based kinship verification using distance ...
  • E. P. Xing, M. I. Jordan, S. J. Russell and ...
  • M. Schultz and T. Joachims, Learning a distance metric from ...
  • J. V. Davis, B. Kulis, P. Jain, S. Sra and ...
  • G. Kunapuli and J. Shavlik, Mirror descent for metric learning: ...
  • Q. Qian, R. Jin, J. Yi, L. Zhang and S. ...
  • M. T. Law, N. Thome and M. Cord, Learning a ...
  • B. Nguyen, C. Morell and B. D. Baets, Supervised distance ...
  • K. Q. Weinberger and K. S. Lawrence, Distance metric learning ...
  • Y. Ying and P. Li, Distance metric learning with eigenvalue ...
  • W. Zuo, F. Wang, D Zhang, L. Lin, Y. Huang, ...
  • Z. Hao, Y. Ruan, Y. Xiao and B. Liu, A ...
  • D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet and ...
  • T. Ahonen, A. Hadid and M. Pietikäinen, Face recognition with ...
  • G. Zhang, X. Huang, S. Z. Li, Y. Wang and ...
  • G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and ...
  • L. V. D. Maaten, M. Chen, S. Tyree and K. ...
  • S. Wager, S. Wang and P. Liang, Dropout training as ...
  • Q. Qian, J. Hu, R. Jin, J. Pei and S. ...
  • S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, ...
  • B. Shaw, B. C. Huang and T. Jebara, Learning a ...
  • Q. Qian, R. Jin, S. Zhu and Y. Lin, Fine-grained ...
  • G. Chechik, V. Sharma, U. Shalit and S. Bengio, Large ...
  • K. Saenko, B. Kulis,M. Fritz and T. Darrell, Adapting visual ...
  • O. Pele and M. Werman, The quadratic-chi histogram distance family, ...
  • J. Alcalá-Fdez, L. Sánchez, S. García, M. D. Jesus, S. ...
  • P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. ...
  • M. J. Lyons, J. Budynek and S. Akamatsu, Automatic classification ...
  • P. Belhumeur, J. Hespanha and D. Kriegman, Eigenfaces vs. fisherfaces: ...
  • W. Yang, L. Xu, X. Chen, F. Zheng and Y. ...
  • T. Ojala, M. Pietikäinen and D. Harwood, A comparative study ...
  • N. S. Vu and A. Caplier, Enhanced patterns of oriented ...
  • N. Dalal and B. Triggs, Histograms of oriented gradients for ...
  • نمایش کامل مراجع