یادگیری متریک بر اساس فاصله χ2 سریع برای دسته بندی داده های هیستوگرامی با دسته بندی کننده KNN
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 532
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TJEE-49-2_016
تاریخ نمایه سازی: 20 آذر 1398
چکیده مقاله:
Data comparison is a fundamental problem in machine learning research. Since, metric learning has various applications in clustering and classification problems, it is attracted much attention in the last decades. In this paper, an appropriate metric learning method is presented to utilize in machine vision problems. Common features in machine vision are often histogram; however, metric learning methods are usually designed based on Mahalanobis distance which is not applicable in histogram features. In this study, a new metric learning method based on modified chi-squared distance (χ2) for histogram data is presented. In histogram data classification, χ2 distance is more accurate than Euclidean one; however, its computational cost is higher than Euclidean distance. In this paper, a χ2 distance approximated formulation where a part of its computations is moved into the feature extraction step in offline phase is proposed. Consequently, computational cost of feature comparison is reduced. Experiments on different datasets show that the proposed metric learning method is more accurate than the existing ones in histogram data classification. Moreover, the approximated χ2 distance increases feature comparison speed about 2.5 times without loss of accuracy.
کلیدواژه ها:
نویسندگان
H. Sadeghi
Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
Abolghasem-A. Raie
Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :