ارائه یک مدل پارامتریک تطبیقی جهت کشف و رده بندی وقایع صوتی در سیگنال های محیطی
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 410
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TJEE-49-2_009
تاریخ نمایه سازی: 20 آذر 1398
چکیده مقاله:
Audio event detection (AED) is a modern way to collect data about human activities in the workplace or in other life environments. We proposed a novel adaptable model based on using two parameters, α and ᵦ to detect all audio events that may be present in a given record accompanied by their time limits in which they occur. After feature extraction and setting the values of the two key parameters, alpha and beta, the audio sequence will be sent into two distinct sub-systems for event detection. The outputs from the two sub-classifiers are then combined and necessary refinements are made on the event time limits. The final detected events are sent to the KNN classifier. The parameters serve as a trade-off tool between precision and recall expectation in the detection process. In the tests, 16 different audio events of an office room were detected, some being similar to each other and some have very similar characteristics to those of the background noise. At frame-based (FB) level, the precision rate was 70.1%, the rate of recall was 75.8%, and F1-measure was 72.8%. The F1-measure has increased by 10.8% suggesting promising applications of the model.
کلیدواژه ها:
Audio event detection (AED) ، environmental sounds ، unsupervised learning ، adaptable modeling systems ، audio monitoring systems ، audio-based acquisition systems
نویسندگان
M. Derakhshan
Computer and IT Engineering Department, Shahrood University of Technology, Shahrood, Iran
H. Marvi
۲- Computer and IT Engineering Department, Shahrood University of Technology, Shahrood, Iran
H. Hassan poor
Computer and IT Engineering Department, Shahrood University of Technology, Shahrood, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :