ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 359

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACR-10-2_003

تاریخ نمایه سازی: 20 آذر 1398

چکیده مقاله:

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumor, an Adaboost ensemble Model is developed. In this research work, both homogeneous and heterogeneous ensemble classifiers (combine two different classifiers together) were implemented, and Synthetic Minority Over-Sampling Technique (SMOTE) data mining pre-processing is used to deal with the class imbalance problem and noise in the dataset. In this paper, the proposed method is of two steps. The first step employs SMOTE to reduce the effect of data imbalance in the dataset. The second step involves classifying using decision algorithms (ADTree, CART, REPTree and Random Forest), Naïve Bayes and their Ensembles. The experiment was implemented on WEKA Explore (Weka ۳.۶). Experimental results shows that Adaboost-Random Forest classify better than other classification algorithms with ۸۲.۵۲% accuracy, follow by Adaboost-REPTree and Adaboost-CART with ۷۷.۶۲% accuracy while Adaboost-Naïve Bayes classifications is the lowest with ۳۵.۶۶% accuracy.

کلیدواژه ها:

breast cancer ، Adaboost ، Synthetic minority over sampling technique ، Random forest ، Ensemble

نویسندگان

Moshood Hambali

Computer Science Department, Federal University Wukari, P.M.B ۱۰۲۰, Katsina-Ala Road, Wukari, Taraba State, Nigeria

Yakub Saheed

Department of Physical Sciences, Computer Science Programme, Al-Hikmah University, P.M.B ۱۶۰۱, Adewole Housing Estate, Ilorin, Kwara State, Nigeria

Tinuke Oladele

Department of Computer Science, University of Ilorin, P.M.B. ۱۵۱۵, Ilorin-Nigeria

Morufat Gbolagade

Department of Physical Sciences, Computer Science Programme, Al-Hikmah University, P.M.B ۱۶۰۱, Adewole Housing Estate, Ilorin, Kwara State, Nigeria