A closed-form solution for fully simply supported rectangular thin plates containing crack
محل انتشار: هجدهمین کنفرانس سالانه مهندسی مکانیک
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 3,063
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISME18_375
تاریخ نمایه سازی: 1 تیر 1389
چکیده مقاله:
In this Paper, exact closed-form characteristic equation in explicit forms are presented on the basis of classical plate theory for freely vibration of rectangular simply supported thin plates with an arbitrary number of allover part-through cracks. The crack is assumed nonpropagating and perpendicular to both edges. It was also assumed that the crack is open at all dynamical condition to avoid non-linearity. A continuously distributed line-spring model was used to describe the elastic behavior of the all-over part-through crack. The accuracy of the presented solution was confirmed by comparing with the results of finite element method using ABAQUS FE code. In addition, the effect of the crack depth and crack location on the natural frequencies of rectangular thin plates was investigated in tabular and graphical forms. The effects of the modes II and III loading conditions (shearing and tearing modes of crack deformation) on the natural frequencies were studied when the crack is located at the nodal lines. Finally, fundamental frequency parameters of thin rectangular plate with an arbitrary number of cracks were obtained.
کلیدواژه ها:
نویسندگان
Sh. Hosseini-Hashemi
Associate Professor, Mechanical Engineering Department, Iran University of Science and Technology
H. Roohi Ghadikolaie
M.Sc. Student, Mechanical Engineering Department, Iran University of Science and Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :