A New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 542

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_SCMA-16-1_011

تاریخ نمایه سازی: 22 مهر 1398

چکیده مقاله:

In this paper, a new stratification of mappings, which is  called $Psi$-simulation functions, is introduced  to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples are furnished to demonstrate the validity of the hypothesis of our results and reality of our generalizations.

نویسندگان

Gholamreza Heidary Joonaghany

Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Ali Farajzadeh

Department of Mathematics, Faculty of Science, University of Razi, Kermanshah ۶۷۱۴۹, Iran.

Mahdi Azhini

Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Farshid Khojasteh

Department of Mathematics, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ya.I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps ...
  • H. Argoubi, B. Samet, and C. Vetro, Nonlinear contractions involving ...
  • A.D. Arvanitakis, A proof of the generalized Banach contraction conjecture, ...
  • S. Banach, Sur les operations dans les ensembles abstraits et ...
  • V. Berinde, Approximating fixed points of weak $varphi$-contractions, Fixed Point ...
  • D. Doric, Common fixed point for generalized $(psi - varphi)$-weak ...
  • D. Doric, Z. Kadelburg, and S. Radenovic, Edelstein-Suzuki-type fixed point ...
  • D. Doric and R. Lazovic, Some Suzuki-type fixed point theorems ...
  • P.N. Dutta and B.S. Choudhary, A generalization of contraction principle ...
  • F. Khojasteh, S. Shukla, and S. Radenovic, A new approach ...
  • M. Kikkawa and T. Suzuki, Some notes on fixed point ...
  • M. Kikkawa and T. Suzuki, Three fixed point theorems for ...
  • W. Kirk and B. Sims, Handbook of metric fixed point ...
  • A. Meir and E. Keeler, A theorem on contraction mappings, ...
  • A. Nastasi and P. Vetro, Fixed point results on metric ...
  • (2015), pp. 1059-1069. ...
  • M. Olgun, O. Bicer, and T. Alyildiz, A new aspect ...
  • K.P.R. Rao, K.P.K. Rao, and H. Aydi, A Suzuki type ...
  • B.E. Rhodes, Some theorems on weakly contractive maps, Nonlinear Anal., ...
  • A. Roldan, E. Karapinar, C. Roldan, and J. Martinez-Moreno, Coincidence ...
  • S.L. Singh, S.N. Mishra, Renu Chugh, and Raj Kamal, General ...
  • S.L. Singh, R. Kamal, M. De La Sen, and Renu ...
  • S.L. Singh, Renu Chugh, and Raj Kamal, Suzuki type common ...
  • T. Suzuki, A generalized Banach contraction principle that Characterizes metric ...
  • T. Suzuki, A new type of fixed point theorem in ...
  • Q. Zhang and Y. Song, Fixed point theory for generalized ...
  • نمایش کامل مراجع