Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm
محل انتشار: مجله تحقیقات منابع زیست محیطی، دوره: 1، شماره: 1
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 538
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJERR-1-1_004
تاریخ نمایه سازی: 17 مهر 1398
چکیده مقاله:
Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable in practice. In this study, an optimization model, consisting of a multi-objective genetic algorithm, ε-NSGA-II, in combination with the Soil Water and Assessment Tool (SWAT) and the parallel computation technique, is developed and tested in the Fairchild Creek watershed in southern Ontario of Canada. The two objectives are to minimize BMPs costs and maximize total phosphorous load reduction. The parallel computation allows the run of multiple SWAT models simultaneously and can reduce the ε-NSGA-II optimization time significantly to achieve the objective. The Pareto-optimal fronts generated between the two objective functions can be used to achieve desired water quality goals with minimum BMP implementation cost to support spatial watershed management and policy making.
کلیدواژه ها:
نویسندگان
Yongbo Liu
University of Louvain
Hailiang Shen
Department of Geography, University of Guelph
Wanhong Yang
University of Guelph
Jing Yang
Singapore-MIT